磁性纳米颗粒的合成、物理性质及生物医学应用综述

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2022-12-01 Epub Date: 2022-09-26 DOI:10.1007/s40204-022-00204-8
Sunita Keshri, Sonali Biswas
{"title":"磁性纳米颗粒的合成、物理性质及生物医学应用综述","authors":"Sunita Keshri,&nbsp;Sonali Biswas","doi":"10.1007/s40204-022-00204-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent innovations in nanotechnology have opened the applicability of multifunctional nanoparticles (NPs) in biomedical diagnosis and treatment. The examples of NPs which have attracted considerable attention in recent years are metals (e.g., Au, Ag, Mg), alloys (e.g., Fe-Co, Fe-Pd, Fe-Pt, Co-Pt), iron oxides (e.g., Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub>), substituted ferrites (e.g., MnFe<sub>2</sub>O<sub>4</sub> and CoFe<sub>2</sub>O<sub>4</sub>), manganites (e.g., [Formula: see text]), etc. Special attention has been paid to magnetic NPs (MNPs), as they are the potential candidates for several biomedical appliances, such as hyperthermia applications, magnetic resonance imaging, contrast imaging, and drug delivery. To achieve effective MNPs, a thorough investigation on the synthesis, and characteristic properties, including size, magnetic properties, and toxicity, is required. Furthermore, the surfaces of the NPs must be tailored to improve the biocompatibility properties and reduce agglomeration. The present review focuses on different mechanisms to develop biocompatible MNPs. The utility of these MNPs in various biomedical applications, especially in treating and diagnosing human diseases, such as targeted drug delivery, hyperthermia treatment for cancer, and other biomedical diagnoses, is thoroughly discussed in this article. Different synthetic processes and important physical properties of these MNPs and their biocomposites are presented.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626731/pdf/40204_2022_Article_204.pdf","citationCount":"3","resultStr":"{\"title\":\"Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review.\",\"authors\":\"Sunita Keshri,&nbsp;Sonali Biswas\",\"doi\":\"10.1007/s40204-022-00204-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent innovations in nanotechnology have opened the applicability of multifunctional nanoparticles (NPs) in biomedical diagnosis and treatment. The examples of NPs which have attracted considerable attention in recent years are metals (e.g., Au, Ag, Mg), alloys (e.g., Fe-Co, Fe-Pd, Fe-Pt, Co-Pt), iron oxides (e.g., Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub>), substituted ferrites (e.g., MnFe<sub>2</sub>O<sub>4</sub> and CoFe<sub>2</sub>O<sub>4</sub>), manganites (e.g., [Formula: see text]), etc. Special attention has been paid to magnetic NPs (MNPs), as they are the potential candidates for several biomedical appliances, such as hyperthermia applications, magnetic resonance imaging, contrast imaging, and drug delivery. To achieve effective MNPs, a thorough investigation on the synthesis, and characteristic properties, including size, magnetic properties, and toxicity, is required. Furthermore, the surfaces of the NPs must be tailored to improve the biocompatibility properties and reduce agglomeration. The present review focuses on different mechanisms to develop biocompatible MNPs. The utility of these MNPs in various biomedical applications, especially in treating and diagnosing human diseases, such as targeted drug delivery, hyperthermia treatment for cancer, and other biomedical diagnoses, is thoroughly discussed in this article. Different synthetic processes and important physical properties of these MNPs and their biocomposites are presented.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626731/pdf/40204_2022_Article_204.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-022-00204-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00204-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

纳米技术的最新创新开启了多功能纳米粒子(NPs)在生物医学诊断和治疗中的应用。近年来备受关注的纳米粒子有金属(如Au、Ag、Mg)、合金(如Fe-Co、Fe-Pd、Fe-Pt、Co-Pt)、氧化铁(如Fe2O3和Fe3O4)、取代铁氧体(如MnFe2O4和CoFe2O4)、锰酸盐(如[公式:见原文])等。磁性NPs (MNPs)受到了特别的关注,因为它们是几种生物医学器械的潜在候选者,如热疗应用、磁共振成像、对比成像和药物输送。为了获得有效的MNPs,需要对合成和特征性质进行彻底的研究,包括尺寸,磁性和毒性。此外,NPs的表面必须量身定制,以提高生物相容性并减少团聚。本文综述了制备生物相容性MNPs的不同机制。本文将深入讨论这些MNPs在各种生物医学应用中的用途,特别是在治疗和诊断人类疾病方面,例如靶向药物输送、癌症的热疗治疗和其他生物医学诊断。介绍了这些MNPs及其生物复合材料的不同合成工艺和重要物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review.

Recent innovations in nanotechnology have opened the applicability of multifunctional nanoparticles (NPs) in biomedical diagnosis and treatment. The examples of NPs which have attracted considerable attention in recent years are metals (e.g., Au, Ag, Mg), alloys (e.g., Fe-Co, Fe-Pd, Fe-Pt, Co-Pt), iron oxides (e.g., Fe2O3 and Fe3O4), substituted ferrites (e.g., MnFe2O4 and CoFe2O4), manganites (e.g., [Formula: see text]), etc. Special attention has been paid to magnetic NPs (MNPs), as they are the potential candidates for several biomedical appliances, such as hyperthermia applications, magnetic resonance imaging, contrast imaging, and drug delivery. To achieve effective MNPs, a thorough investigation on the synthesis, and characteristic properties, including size, magnetic properties, and toxicity, is required. Furthermore, the surfaces of the NPs must be tailored to improve the biocompatibility properties and reduce agglomeration. The present review focuses on different mechanisms to develop biocompatible MNPs. The utility of these MNPs in various biomedical applications, especially in treating and diagnosing human diseases, such as targeted drug delivery, hyperthermia treatment for cancer, and other biomedical diagnoses, is thoroughly discussed in this article. Different synthetic processes and important physical properties of these MNPs and their biocomposites are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1