Agustín F. Solano-Arguedas, Christopher Boothman, Laura Newsome, Richard A. D. Pattrick, Daniel Arguedas-Quesada, Clare H. Robinson, Jonathan R. Lloyd
{"title":"圣埃琳娜蛇绿岩热带蛇纹岩土壤的地球化学和微生物学,景观-生物地理学方法","authors":"Agustín F. Solano-Arguedas, Christopher Boothman, Laura Newsome, Richard A. D. Pattrick, Daniel Arguedas-Quesada, Clare H. Robinson, Jonathan R. Lloyd","doi":"10.1186/s12932-022-00079-5","DOIUrl":null,"url":null,"abstract":"<div><p>The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in <i>mountain</i> soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the <i>inner ophiolite lowland</i> soils were more like the surrounding mountain soils rather than the <i>north lowland</i> soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geochemistry and microbiology of tropical serpentine soils in the Santa Elena Ophiolite, a landscape-biogeographical approach\",\"authors\":\"Agustín F. Solano-Arguedas, Christopher Boothman, Laura Newsome, Richard A. D. Pattrick, Daniel Arguedas-Quesada, Clare H. Robinson, Jonathan R. Lloyd\",\"doi\":\"10.1186/s12932-022-00079-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in <i>mountain</i> soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the <i>inner ophiolite lowland</i> soils were more like the surrounding mountain soils rather than the <i>north lowland</i> soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12932-022-00079-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-022-00079-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geochemistry and microbiology of tropical serpentine soils in the Santa Elena Ophiolite, a landscape-biogeographical approach
The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.
期刊介绍:
Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.