软张量回归

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Journal of Machine Learning Research Pub Date : 2021-01-01
Georgia Papadogeorgou, Zhengwu Zhang, David B Dunson
{"title":"软张量回归","authors":"Georgia Papadogeorgou, Zhengwu Zhang, David B Dunson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical methods relating tensor predictors to scalar outcomes in a regression model generally vectorize the tensor predictor and estimate the coefficients of its entries employing some form of regularization, use summaries of the tensor covariate, or use a low dimensional approximation of the coefficient tensor. However, low rank approximations of the coefficient tensor can suffer if the true rank is not small. We propose a tensor regression framework which assumes a <i>soft</i> version of the parallel factors (PARAFAC) approximation. In contrast to classic PARAFAC where each entry of the coefficient tensor is the sum of products of row-specific contributions across the tensor modes, the soft tensor regression (Softer) framework allows the row-specific contributions to vary around an overall mean. We follow a Bayesian approach to inference, and show that softening the PARAFAC increases model flexibility, leads to improved estimation of coefficient tensors, more accurate identification of important predictor entries, and more precise predictions, even for a low approximation rank. From a theoretical perspective, we show that employing Softer leads to a weakly consistent posterior distribution of the coefficient tensor, <i>irrespective of the true or approximation tensor rank</i>, a result that is not true when employing the classic PARAFAC for tensor regression. In the context of our motivating application, we adapt Softer to symmetric and semi-symmetric tensor predictors and analyze the relationship between brain network characteristics and human traits.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Soft Tensor Regression.\",\"authors\":\"Georgia Papadogeorgou, Zhengwu Zhang, David B Dunson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statistical methods relating tensor predictors to scalar outcomes in a regression model generally vectorize the tensor predictor and estimate the coefficients of its entries employing some form of regularization, use summaries of the tensor covariate, or use a low dimensional approximation of the coefficient tensor. However, low rank approximations of the coefficient tensor can suffer if the true rank is not small. We propose a tensor regression framework which assumes a <i>soft</i> version of the parallel factors (PARAFAC) approximation. In contrast to classic PARAFAC where each entry of the coefficient tensor is the sum of products of row-specific contributions across the tensor modes, the soft tensor regression (Softer) framework allows the row-specific contributions to vary around an overall mean. We follow a Bayesian approach to inference, and show that softening the PARAFAC increases model flexibility, leads to improved estimation of coefficient tensors, more accurate identification of important predictor entries, and more precise predictions, even for a low approximation rank. From a theoretical perspective, we show that employing Softer leads to a weakly consistent posterior distribution of the coefficient tensor, <i>irrespective of the true or approximation tensor rank</i>, a result that is not true when employing the classic PARAFAC for tensor regression. In the context of our motivating application, we adapt Softer to symmetric and semi-symmetric tensor predictors and analyze the relationship between brain network characteristics and human traits.</p>\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在回归模型中,将张量预测因子与标量结果相关联的统计方法通常会将张量预测因子矢量化,并通过某种形式的正则化来估计其条目系数,或使用张量协变量的摘要,或使用系数张量的低维近似值。然而,如果真实秩不大,系数张量的低秩近似就会受到影响。我们提出了一种张量回归框架,它假定了一种软版本的并行因子(PARAFAC)近似。与传统的 PARAFAC(系数张量的每个条目都是张量模式中特定行贡献的乘积之和)不同,软张量回归(Soft)框架允许特定行的贡献围绕总体平均值变化。我们采用贝叶斯方法进行推理,结果表明,软化 PARAFAC 增加了模型的灵活性,改进了系数张量的估计,更准确地识别了重要的预测项,即使在近似等级较低的情况下,预测结果也更加精确。从理论角度来看,我们发现,无论真实或近似张量阶数如何,使用 Softer 都会导致系数张量的弱一致性后验分布,而使用经典 PARAFAC 进行张量回归时则不会出现这种结果。在我们的激励应用中,我们将 Softer 应用于对称和半对称张量预测,并分析了大脑网络特征与人类特征之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft Tensor Regression.

Statistical methods relating tensor predictors to scalar outcomes in a regression model generally vectorize the tensor predictor and estimate the coefficients of its entries employing some form of regularization, use summaries of the tensor covariate, or use a low dimensional approximation of the coefficient tensor. However, low rank approximations of the coefficient tensor can suffer if the true rank is not small. We propose a tensor regression framework which assumes a soft version of the parallel factors (PARAFAC) approximation. In contrast to classic PARAFAC where each entry of the coefficient tensor is the sum of products of row-specific contributions across the tensor modes, the soft tensor regression (Softer) framework allows the row-specific contributions to vary around an overall mean. We follow a Bayesian approach to inference, and show that softening the PARAFAC increases model flexibility, leads to improved estimation of coefficient tensors, more accurate identification of important predictor entries, and more precise predictions, even for a low approximation rank. From a theoretical perspective, we show that employing Softer leads to a weakly consistent posterior distribution of the coefficient tensor, irrespective of the true or approximation tensor rank, a result that is not true when employing the classic PARAFAC for tensor regression. In the context of our motivating application, we adapt Softer to symmetric and semi-symmetric tensor predictors and analyze the relationship between brain network characteristics and human traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
期刊最新文献
Convergence for nonconvex ADMM, with applications to CT imaging. Effect-Invariant Mechanisms for Policy Generalization. Batch Normalization Preconditioning for Stochastic Gradient Langevin Dynamics Why Self-Attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries Efficient Anti-Symmetrization of a Neural Network Layer by Taming the Sign Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1