Chase J. Ellingson , Jyotpal Singh , Cody A. Ellingson , Ryan Dech , Jaroslaw Piskorski , J. Patrick Neary
{"title":"外部应激源对生理测试的影响:对回归比赛方案的启示","authors":"Chase J. Ellingson , Jyotpal Singh , Cody A. Ellingson , Ryan Dech , Jaroslaw Piskorski , J. Patrick Neary","doi":"10.1016/j.crphys.2022.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>External stressors such as alcohol, caffeine, and vigorous exercise are known to alter cellular homeostasis, affecting the autonomic nervous system (ANS) and overall physiological function. However, little direct evidence exists quantifying the impact of these external stressors on physiological testing. We assessed the impact of the above-listed stressors on spontaneous baroreflex sensitivity (BRS), heart rate variability (HRV), heart rate asymmetry (HRA), and systolic blood pressure variability (BPV). Seventeen male university varsity American-style football athletes completed two identical assessments on separate days, once presenting with one or more stressors (recent intake of caffeine, alcohol, or exercise participation; contraindicated assessment) and another with no stressors present (repeat assessment). Both assessments were conducted within one week and at the same time of day. The testing protocol consisted of 5-min of rest followed by 5-min of a squat-stand maneuver (0.05 Hz). Continuous beat-to-beat blood pressure and electrocardiogram measurements were collected and allowed for calculations of BRS, HRV, HRA, and BPV. Significant decreases (p < 0.05) in HRV and HRA metrics (SDNN, SD2, SDNNd, SDNNa, SD2a, SD2d), HRV total power, and BRS-up sequence were found during the contraindicated assessment in comparison to the repeat assessment. When assessing those with exercise as their only stressor, high-frequency HRV and BRS-pooled were significantly decreased and increased, respectively, during the contraindicated assessment. Pre-season physiological baseline testing in sport is becoming increasingly prevalent and thus must consider external stressors to ascertain accurate and reliable data. This data confirms the need for stringent and standardized guidelines for pre-participation baseline physiological testing.</p></div>","PeriodicalId":72753,"journal":{"name":"Current research in physiology","volume":"5 ","pages":"Pages 240-245"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/3b/main.PMC9213225.pdf","citationCount":"5","resultStr":"{\"title\":\"The influence of external stressors on physiological testing: Implication for return-to-play protocols\",\"authors\":\"Chase J. Ellingson , Jyotpal Singh , Cody A. Ellingson , Ryan Dech , Jaroslaw Piskorski , J. Patrick Neary\",\"doi\":\"10.1016/j.crphys.2022.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>External stressors such as alcohol, caffeine, and vigorous exercise are known to alter cellular homeostasis, affecting the autonomic nervous system (ANS) and overall physiological function. However, little direct evidence exists quantifying the impact of these external stressors on physiological testing. We assessed the impact of the above-listed stressors on spontaneous baroreflex sensitivity (BRS), heart rate variability (HRV), heart rate asymmetry (HRA), and systolic blood pressure variability (BPV). Seventeen male university varsity American-style football athletes completed two identical assessments on separate days, once presenting with one or more stressors (recent intake of caffeine, alcohol, or exercise participation; contraindicated assessment) and another with no stressors present (repeat assessment). Both assessments were conducted within one week and at the same time of day. The testing protocol consisted of 5-min of rest followed by 5-min of a squat-stand maneuver (0.05 Hz). Continuous beat-to-beat blood pressure and electrocardiogram measurements were collected and allowed for calculations of BRS, HRV, HRA, and BPV. Significant decreases (p < 0.05) in HRV and HRA metrics (SDNN, SD2, SDNNd, SDNNa, SD2a, SD2d), HRV total power, and BRS-up sequence were found during the contraindicated assessment in comparison to the repeat assessment. When assessing those with exercise as their only stressor, high-frequency HRV and BRS-pooled were significantly decreased and increased, respectively, during the contraindicated assessment. Pre-season physiological baseline testing in sport is becoming increasingly prevalent and thus must consider external stressors to ascertain accurate and reliable data. This data confirms the need for stringent and standardized guidelines for pre-participation baseline physiological testing.</p></div>\",\"PeriodicalId\":72753,\"journal\":{\"name\":\"Current research in physiology\",\"volume\":\"5 \",\"pages\":\"Pages 240-245\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/3b/main.PMC9213225.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665944122000268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665944122000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The influence of external stressors on physiological testing: Implication for return-to-play protocols
External stressors such as alcohol, caffeine, and vigorous exercise are known to alter cellular homeostasis, affecting the autonomic nervous system (ANS) and overall physiological function. However, little direct evidence exists quantifying the impact of these external stressors on physiological testing. We assessed the impact of the above-listed stressors on spontaneous baroreflex sensitivity (BRS), heart rate variability (HRV), heart rate asymmetry (HRA), and systolic blood pressure variability (BPV). Seventeen male university varsity American-style football athletes completed two identical assessments on separate days, once presenting with one or more stressors (recent intake of caffeine, alcohol, or exercise participation; contraindicated assessment) and another with no stressors present (repeat assessment). Both assessments were conducted within one week and at the same time of day. The testing protocol consisted of 5-min of rest followed by 5-min of a squat-stand maneuver (0.05 Hz). Continuous beat-to-beat blood pressure and electrocardiogram measurements were collected and allowed for calculations of BRS, HRV, HRA, and BPV. Significant decreases (p < 0.05) in HRV and HRA metrics (SDNN, SD2, SDNNd, SDNNa, SD2a, SD2d), HRV total power, and BRS-up sequence were found during the contraindicated assessment in comparison to the repeat assessment. When assessing those with exercise as their only stressor, high-frequency HRV and BRS-pooled were significantly decreased and increased, respectively, during the contraindicated assessment. Pre-season physiological baseline testing in sport is becoming increasingly prevalent and thus must consider external stressors to ascertain accurate and reliable data. This data confirms the need for stringent and standardized guidelines for pre-participation baseline physiological testing.