SARS-CoV2传染性预测:基于刺突蛋白与血管紧张素转换酶2对接模拟分析的数学模型

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Microbial Risk Analysis Pub Date : 2022-12-01 DOI:10.1016/j.mran.2022.100227
Yutaka Takaoka , Aki Sugano , Yoshitomo Morinaga , Mika Ohta , Kenji Miura , Haruyuki Kataguchi , Minoru Kumaoka , Shigemi Kimura , Yoshimasa Maniwa
{"title":"SARS-CoV2传染性预测:基于刺突蛋白与血管紧张素转换酶2对接模拟分析的数学模型","authors":"Yutaka Takaoka ,&nbsp;Aki Sugano ,&nbsp;Yoshitomo Morinaga ,&nbsp;Mika Ohta ,&nbsp;Kenji Miura ,&nbsp;Haruyuki Kataguchi ,&nbsp;Minoru Kumaoka ,&nbsp;Shigemi Kimura ,&nbsp;Yoshimasa Maniwa","doi":"10.1016/j.mran.2022.100227","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Variants of a coronavirus (SARS-CoV-2) have been spreading in a global pandemic. Improved understanding of the infectivity of future new variants is important so that effective countermeasures against them can be quickly undertaken. In our research reported here, we aimed to predict the infectivity of SARS-CoV-2 by using a mathematical model with molecular simulation analysis, and we used phylogenetic analysis to determine the evolutionary distance of the spike protein gene (S gene) of SARS-CoV-2.</p></div><div><h3>Methods</h3><p>We subjected the six variants and the wild type of spike protein and human angiotensin-converting enzyme 2 (ACE2) to molecular docking simulation analyses to understand the binding affinity of spike protein and ACE2. We then utilized regression analysis of the correlation coefficient of the mathematical model and the infectivity of SARS-CoV-2 to predict infectivity.</p></div><div><h3>Results</h3><p>The evolutionary distance of the S gene correlated with the infectivity of SARS-CoV-2 variants. The calculated biding affinity for the mathematical model obtained with results of molecular docking simulation also correlated with the infectivity of SARS-CoV-2 variants. These results suggest that the data from the docking simulation for the receptor binding domain of variant spike proteins and human ACE2 were valuable for prediction of SARS-CoV-2 infectivity.</p></div><div><h3>Conclusion</h3><p>We developed a mathematical model for prediction of SARS-CoV-2 variant infectivity by using binding affinity obtained via molecular docking and the evolutionary distance of the S gene.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"22 ","pages":"Article 100227"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212987/pdf/","citationCount":"4","resultStr":"{\"title\":\"Prediction of infectivity of SARS-CoV2: Mathematical model with analysis of docking simulation for spike proteins and angiotensin-converting enzyme 2\",\"authors\":\"Yutaka Takaoka ,&nbsp;Aki Sugano ,&nbsp;Yoshitomo Morinaga ,&nbsp;Mika Ohta ,&nbsp;Kenji Miura ,&nbsp;Haruyuki Kataguchi ,&nbsp;Minoru Kumaoka ,&nbsp;Shigemi Kimura ,&nbsp;Yoshimasa Maniwa\",\"doi\":\"10.1016/j.mran.2022.100227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Variants of a coronavirus (SARS-CoV-2) have been spreading in a global pandemic. Improved understanding of the infectivity of future new variants is important so that effective countermeasures against them can be quickly undertaken. In our research reported here, we aimed to predict the infectivity of SARS-CoV-2 by using a mathematical model with molecular simulation analysis, and we used phylogenetic analysis to determine the evolutionary distance of the spike protein gene (S gene) of SARS-CoV-2.</p></div><div><h3>Methods</h3><p>We subjected the six variants and the wild type of spike protein and human angiotensin-converting enzyme 2 (ACE2) to molecular docking simulation analyses to understand the binding affinity of spike protein and ACE2. We then utilized regression analysis of the correlation coefficient of the mathematical model and the infectivity of SARS-CoV-2 to predict infectivity.</p></div><div><h3>Results</h3><p>The evolutionary distance of the S gene correlated with the infectivity of SARS-CoV-2 variants. The calculated biding affinity for the mathematical model obtained with results of molecular docking simulation also correlated with the infectivity of SARS-CoV-2 variants. These results suggest that the data from the docking simulation for the receptor binding domain of variant spike proteins and human ACE2 were valuable for prediction of SARS-CoV-2 infectivity.</p></div><div><h3>Conclusion</h3><p>We developed a mathematical model for prediction of SARS-CoV-2 variant infectivity by using binding affinity obtained via molecular docking and the evolutionary distance of the S gene.</p></div>\",\"PeriodicalId\":48593,\"journal\":{\"name\":\"Microbial Risk Analysis\",\"volume\":\"22 \",\"pages\":\"Article 100227\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212987/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Risk Analysis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352352222000275\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352222000275","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

一种冠状病毒(SARS-CoV-2)的变体已经在全球大流行中传播。提高对未来新变种的传染性的了解是重要的,以便能够迅速采取有效的对策。在本文报道的研究中,我们旨在通过数学模型结合分子模拟分析预测SARS-CoV-2的传染性,并通过系统发育分析确定SARS-CoV-2刺突蛋白基因(S基因)的进化距离。方法对6个突变体和野生型刺突蛋白与人血管紧张素转换酶2 (ACE2)进行分子对接模拟分析,了解刺突蛋白与ACE2的结合亲和力。然后利用数学模型的相关系数与SARS-CoV-2的传染性进行回归分析,预测传染性。结果S基因的进化距离与SARS-CoV-2变异的传染性相关。根据分子对接模拟结果计算出的数学模型的结合亲和力也与SARS-CoV-2变异体的传染性相关。这些结果表明,变异刺突蛋白受体结合域与人类ACE2的对接模拟数据对预测SARS-CoV-2的传染性具有重要价值。结论利用分子对接获得的结合亲和力和S基因的进化距离,建立了预测SARS-CoV-2变异体传染性的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of infectivity of SARS-CoV2: Mathematical model with analysis of docking simulation for spike proteins and angiotensin-converting enzyme 2

Objectives

Variants of a coronavirus (SARS-CoV-2) have been spreading in a global pandemic. Improved understanding of the infectivity of future new variants is important so that effective countermeasures against them can be quickly undertaken. In our research reported here, we aimed to predict the infectivity of SARS-CoV-2 by using a mathematical model with molecular simulation analysis, and we used phylogenetic analysis to determine the evolutionary distance of the spike protein gene (S gene) of SARS-CoV-2.

Methods

We subjected the six variants and the wild type of spike protein and human angiotensin-converting enzyme 2 (ACE2) to molecular docking simulation analyses to understand the binding affinity of spike protein and ACE2. We then utilized regression analysis of the correlation coefficient of the mathematical model and the infectivity of SARS-CoV-2 to predict infectivity.

Results

The evolutionary distance of the S gene correlated with the infectivity of SARS-CoV-2 variants. The calculated biding affinity for the mathematical model obtained with results of molecular docking simulation also correlated with the infectivity of SARS-CoV-2 variants. These results suggest that the data from the docking simulation for the receptor binding domain of variant spike proteins and human ACE2 were valuable for prediction of SARS-CoV-2 infectivity.

Conclusion

We developed a mathematical model for prediction of SARS-CoV-2 variant infectivity by using binding affinity obtained via molecular docking and the evolutionary distance of the S gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Risk Analysis
Microbial Risk Analysis Medicine-Microbiology (medical)
CiteScore
5.70
自引率
7.10%
发文量
28
审稿时长
52 days
期刊介绍: The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.
期刊最新文献
Editorial Board Corrigendum to “Spatial risk assessment of ovine Scrapie in Brazil” [Microbial Risk Analysis 25 (2023) 100282] Quantitative microbial risk assessment of antibiotic-resistant Salmonella enterica contaminating hydroponic leafy vegetables Assessing urban street food safety among youth: The impact of road dust on potential microbial contamination risks to student health Measuring transboundary disease spread - ASF in wild boars straddling Piedmont and Liguria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1