Mohammad Omar Faruk, Md. Sahidur Rahman, Sumiya Nur Jannat, Yasin Arafat, Kamrul Islam, Sarmin Akhter
{"title":"环境因素和污染物对新冠肺炎传播的影响综述","authors":"Mohammad Omar Faruk, Md. Sahidur Rahman, Sumiya Nur Jannat, Yasin Arafat, Kamrul Islam, Sarmin Akhter","doi":"10.1007/s10453-022-09748-5","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus disease (COVID-19) caused an unprecedented loss of life with colossal social and economic fallout over 237 countries and territories worldwide. Environmental conditions played a significant role in spreading the virus. Despite the availability of literature, the consecutive waves of COVID-19 in all geographical conditions create the necessity of reviewing the impact of environmental factors on it. This study synthesized and reviewed the findings of 110 previously published articles on meteorological factors and COVID-19 transmission. This study aimed to identify the diversified impacts of meteorological factors on the spread of infection and suggests future research. Temperature, rainfall, air quality, sunshine, wind speed, air pollution, and humidity were found as investigated frequently. Correlation and regression analysis have been widely used in previous studies. Most of the literature showed that temperature and humidity have a favorable relationship with the spread of COVID-19. On the other hand, 20 articles stated no relationship with humidity, and nine were revealed the negative effect of temperature. The daily number of COVID-19 confirmed cases increased by 4.86% for every 1 °C increase in temperature. Sunlight was also found as a significant factor in 10 studies. Moreover, increasing COVID-19 incidence appeared to be associated with increased air pollution, particularly PM10, PM2.5, and O<sub>3</sub> concentrations. Studies also indicated a negative relation between the air quality index and the COVID-19 cases. This review determined environmental variables' complex and contradictory effects on COVID-19 transmission. Hence it becomes essential to include environmental parameters into epidemiological models and controlled laboratory experiments to draw more precious results.\n</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"38 3","pages":"277 - 286"},"PeriodicalIF":2.2000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10453-022-09748-5.pdf","citationCount":"3","resultStr":"{\"title\":\"A review of the impact of environmental factors and pollutants on covid-19 transmission\",\"authors\":\"Mohammad Omar Faruk, Md. Sahidur Rahman, Sumiya Nur Jannat, Yasin Arafat, Kamrul Islam, Sarmin Akhter\",\"doi\":\"10.1007/s10453-022-09748-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronavirus disease (COVID-19) caused an unprecedented loss of life with colossal social and economic fallout over 237 countries and territories worldwide. Environmental conditions played a significant role in spreading the virus. Despite the availability of literature, the consecutive waves of COVID-19 in all geographical conditions create the necessity of reviewing the impact of environmental factors on it. This study synthesized and reviewed the findings of 110 previously published articles on meteorological factors and COVID-19 transmission. This study aimed to identify the diversified impacts of meteorological factors on the spread of infection and suggests future research. Temperature, rainfall, air quality, sunshine, wind speed, air pollution, and humidity were found as investigated frequently. Correlation and regression analysis have been widely used in previous studies. Most of the literature showed that temperature and humidity have a favorable relationship with the spread of COVID-19. On the other hand, 20 articles stated no relationship with humidity, and nine were revealed the negative effect of temperature. The daily number of COVID-19 confirmed cases increased by 4.86% for every 1 °C increase in temperature. Sunlight was also found as a significant factor in 10 studies. Moreover, increasing COVID-19 incidence appeared to be associated with increased air pollution, particularly PM10, PM2.5, and O<sub>3</sub> concentrations. Studies also indicated a negative relation between the air quality index and the COVID-19 cases. This review determined environmental variables' complex and contradictory effects on COVID-19 transmission. Hence it becomes essential to include environmental parameters into epidemiological models and controlled laboratory experiments to draw more precious results.\\n</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"38 3\",\"pages\":\"277 - 286\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10453-022-09748-5.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-022-09748-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-022-09748-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A review of the impact of environmental factors and pollutants on covid-19 transmission
The coronavirus disease (COVID-19) caused an unprecedented loss of life with colossal social and economic fallout over 237 countries and territories worldwide. Environmental conditions played a significant role in spreading the virus. Despite the availability of literature, the consecutive waves of COVID-19 in all geographical conditions create the necessity of reviewing the impact of environmental factors on it. This study synthesized and reviewed the findings of 110 previously published articles on meteorological factors and COVID-19 transmission. This study aimed to identify the diversified impacts of meteorological factors on the spread of infection and suggests future research. Temperature, rainfall, air quality, sunshine, wind speed, air pollution, and humidity were found as investigated frequently. Correlation and regression analysis have been widely used in previous studies. Most of the literature showed that temperature and humidity have a favorable relationship with the spread of COVID-19. On the other hand, 20 articles stated no relationship with humidity, and nine were revealed the negative effect of temperature. The daily number of COVID-19 confirmed cases increased by 4.86% for every 1 °C increase in temperature. Sunlight was also found as a significant factor in 10 studies. Moreover, increasing COVID-19 incidence appeared to be associated with increased air pollution, particularly PM10, PM2.5, and O3 concentrations. Studies also indicated a negative relation between the air quality index and the COVID-19 cases. This review determined environmental variables' complex and contradictory effects on COVID-19 transmission. Hence it becomes essential to include environmental parameters into epidemiological models and controlled laboratory experiments to draw more precious results.
期刊介绍:
Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more.
Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.