Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech
{"title":"基于能力的个性化键盘生成方法","authors":"Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech","doi":"10.3390/mti6080067","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.</p>","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ability-Based Methods for Personalized Keyboard Generation.\",\"authors\":\"Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech\",\"doi\":\"10.3390/mti6080067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.</p>\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti6080067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti6080067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Ability-Based Methods for Personalized Keyboard Generation.
This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.