贝叶斯分层随机效应荟萃分析和I期临床试验设计。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2022-12-01 Epub Date: 2022-09-26 DOI:10.1214/22-aoas1600
Ruitao Lin, Haolun Shi, Guosheng Yin, Peter F Thall, Ying Yuan, Christopher R Flowers
{"title":"贝叶斯分层随机效应荟萃分析和I期临床试验设计。","authors":"Ruitao Lin,&nbsp;Haolun Shi,&nbsp;Guosheng Yin,&nbsp;Peter F Thall,&nbsp;Ying Yuan,&nbsp;Christopher R Flowers","doi":"10.1214/22-aoas1600","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a curve-free random-effects meta-analysis approach to combining data from multiple phase I clinical trials to identify an optimal dose. Our method accounts for between-study heterogeneity that may stem from different study designs, patient populations, or tumor types. We also develop a meta-analytic-predictive (MAP) method based on a power prior that incorporates data from multiple historical studies into the design and conduct of a new phase I trial. Performances of the proposed methods for data analysis and trial design are evaluated by extensive simulation studies. The proposed random-effects meta-analysis method provides more reliable dose selection than comparators that rely on parametric assumptions. The MAP-based dose-finding designs are generally more efficient than those that do not borrow information, especially when the current and historical studies are similar. The proposed methodologies are illustrated by a meta-analysis of five historical phase I studies of Sorafenib, and design of a new phase I trial.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624503/pdf/nihms-1814042.pdf","citationCount":"1","resultStr":"{\"title\":\"BAYESIAN HIERARCHICAL RANDOM-EFFECTS META-ANALYSIS AND DESIGN OF PHASE I CLINICAL TRIALS.\",\"authors\":\"Ruitao Lin,&nbsp;Haolun Shi,&nbsp;Guosheng Yin,&nbsp;Peter F Thall,&nbsp;Ying Yuan,&nbsp;Christopher R Flowers\",\"doi\":\"10.1214/22-aoas1600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a curve-free random-effects meta-analysis approach to combining data from multiple phase I clinical trials to identify an optimal dose. Our method accounts for between-study heterogeneity that may stem from different study designs, patient populations, or tumor types. We also develop a meta-analytic-predictive (MAP) method based on a power prior that incorporates data from multiple historical studies into the design and conduct of a new phase I trial. Performances of the proposed methods for data analysis and trial design are evaluated by extensive simulation studies. The proposed random-effects meta-analysis method provides more reliable dose selection than comparators that rely on parametric assumptions. The MAP-based dose-finding designs are generally more efficient than those that do not borrow information, especially when the current and historical studies are similar. The proposed methodologies are illustrated by a meta-analysis of five historical phase I studies of Sorafenib, and design of a new phase I trial.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624503/pdf/nihms-1814042.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aoas1600\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aoas1600","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出一种无曲线随机效应荟萃分析方法,结合多个I期临床试验的数据来确定最佳剂量。我们的方法解释了研究间的异质性,这种异质性可能源于不同的研究设计、患者群体或肿瘤类型。我们还开发了一种基于功率先验的元分析预测(MAP)方法,该方法将来自多个历史研究的数据纳入新的I期试验的设计和实施中。所提出的数据分析和试验设计方法的性能通过广泛的仿真研究进行了评估。所提出的随机效应荟萃分析方法比依赖参数假设的比较方法提供了更可靠的剂量选择。基于地图的剂量发现设计通常比不借鉴信息的设计更有效,特别是在当前和历史研究相似的情况下。提出的方法是通过对5个索拉非尼历史一期研究的荟萃分析和一个新的一期试验的设计来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BAYESIAN HIERARCHICAL RANDOM-EFFECTS META-ANALYSIS AND DESIGN OF PHASE I CLINICAL TRIALS.

We propose a curve-free random-effects meta-analysis approach to combining data from multiple phase I clinical trials to identify an optimal dose. Our method accounts for between-study heterogeneity that may stem from different study designs, patient populations, or tumor types. We also develop a meta-analytic-predictive (MAP) method based on a power prior that incorporates data from multiple historical studies into the design and conduct of a new phase I trial. Performances of the proposed methods for data analysis and trial design are evaluated by extensive simulation studies. The proposed random-effects meta-analysis method provides more reliable dose selection than comparators that rely on parametric assumptions. The MAP-based dose-finding designs are generally more efficient than those that do not borrow information, especially when the current and historical studies are similar. The proposed methodologies are illustrated by a meta-analysis of five historical phase I studies of Sorafenib, and design of a new phase I trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1