{"title":"为什么第三种进化方式是必要的。","authors":"James A Shapiro","doi":"10.19272/202111402002","DOIUrl":null,"url":null,"abstract":"<p><p>The Third Way of Evolution was founded in 2014 to make the public aware that contemporary evolution science is not limited to the neo-Darwinian Modern Synthesis of the past century. This was important to do because evolution was challenged as incapable of explaining biological complexity by the Intelligent Design movement. Expounding biological theories like the Modern Synthesis is always subject to limited empirical evidence, fundamental concepts that inevitably change over time, and conceptual preferences that often prove to be misleading. The Modern Synthesis was based on Darwin's preference for the phyletic gradualism necessary to elevate Natural Selection as the sole force determining the direction of evolutionary change. In contradiction to this principle, agricultural crop breeding, direct observation in nature, and genomics have shown that genome change following symbiogenetic cell fusions or interspecific hybridization, not selection, are empirically the most effective methods for originating novel life forms and new species. By asserting that the accumulation of random \"slight\" variations was the basic mode of both short-term and long-term evolutionary change, the Modern Synthesis also ignored the distinction between (1) microevolutionary change within species by localized mutations and (2) macroevolutionary origination of new species and taxa by genome restructuring. In so doing, the Modern Synthesis failed to recognize the evolutionary importance of cellular capacities to generate large-scale genome changes. By focusing on individual protein-coding genes as the fundamental units of genetic information, the Modern Synthesis did not successfully incorporate either the full non-coding informa tion content in genomes or the major evolutionary potential of mobile DNA elements to generate multisite intragenomic networks necessary for the development of complex organisms. When all of the phenomena overlooked by the Modern Synthesis are taken into consideration, it is not difficult to answer Intelligent Design arguments and show that science is making real progress in understanding the evolution of biological complexity.</p>","PeriodicalId":54453,"journal":{"name":"Theoretical Biology Forum","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Why the third way of evolution is necessary.\",\"authors\":\"James A Shapiro\",\"doi\":\"10.19272/202111402002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Third Way of Evolution was founded in 2014 to make the public aware that contemporary evolution science is not limited to the neo-Darwinian Modern Synthesis of the past century. This was important to do because evolution was challenged as incapable of explaining biological complexity by the Intelligent Design movement. Expounding biological theories like the Modern Synthesis is always subject to limited empirical evidence, fundamental concepts that inevitably change over time, and conceptual preferences that often prove to be misleading. The Modern Synthesis was based on Darwin's preference for the phyletic gradualism necessary to elevate Natural Selection as the sole force determining the direction of evolutionary change. In contradiction to this principle, agricultural crop breeding, direct observation in nature, and genomics have shown that genome change following symbiogenetic cell fusions or interspecific hybridization, not selection, are empirically the most effective methods for originating novel life forms and new species. By asserting that the accumulation of random \\\"slight\\\" variations was the basic mode of both short-term and long-term evolutionary change, the Modern Synthesis also ignored the distinction between (1) microevolutionary change within species by localized mutations and (2) macroevolutionary origination of new species and taxa by genome restructuring. In so doing, the Modern Synthesis failed to recognize the evolutionary importance of cellular capacities to generate large-scale genome changes. By focusing on individual protein-coding genes as the fundamental units of genetic information, the Modern Synthesis did not successfully incorporate either the full non-coding informa tion content in genomes or the major evolutionary potential of mobile DNA elements to generate multisite intragenomic networks necessary for the development of complex organisms. When all of the phenomena overlooked by the Modern Synthesis are taken into consideration, it is not difficult to answer Intelligent Design arguments and show that science is making real progress in understanding the evolution of biological complexity.</p>\",\"PeriodicalId\":54453,\"journal\":{\"name\":\"Theoretical Biology Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology Forum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.19272/202111402002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology Forum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.19272/202111402002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The Third Way of Evolution was founded in 2014 to make the public aware that contemporary evolution science is not limited to the neo-Darwinian Modern Synthesis of the past century. This was important to do because evolution was challenged as incapable of explaining biological complexity by the Intelligent Design movement. Expounding biological theories like the Modern Synthesis is always subject to limited empirical evidence, fundamental concepts that inevitably change over time, and conceptual preferences that often prove to be misleading. The Modern Synthesis was based on Darwin's preference for the phyletic gradualism necessary to elevate Natural Selection as the sole force determining the direction of evolutionary change. In contradiction to this principle, agricultural crop breeding, direct observation in nature, and genomics have shown that genome change following symbiogenetic cell fusions or interspecific hybridization, not selection, are empirically the most effective methods for originating novel life forms and new species. By asserting that the accumulation of random "slight" variations was the basic mode of both short-term and long-term evolutionary change, the Modern Synthesis also ignored the distinction between (1) microevolutionary change within species by localized mutations and (2) macroevolutionary origination of new species and taxa by genome restructuring. In so doing, the Modern Synthesis failed to recognize the evolutionary importance of cellular capacities to generate large-scale genome changes. By focusing on individual protein-coding genes as the fundamental units of genetic information, the Modern Synthesis did not successfully incorporate either the full non-coding informa tion content in genomes or the major evolutionary potential of mobile DNA elements to generate multisite intragenomic networks necessary for the development of complex organisms. When all of the phenomena overlooked by the Modern Synthesis are taken into consideration, it is not difficult to answer Intelligent Design arguments and show that science is making real progress in understanding the evolution of biological complexity.