{"title":"利用全基因组关联研究鉴定日本粳稻冠根数数量性状位点上的一个独特等位基因。","authors":"Shota Teramoto, Masanori Yamasaki, Yusaku Uga","doi":"10.1270/jsbbs.22010","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (<i>Oryza sativa</i>), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it <i>qNCR1</i> (<i>quantitative trait locus for Number of Crown Root 1</i>). A linkage disequilibrium map around <i>qNCR1</i> suggested that three candidate genes are involved in crown root number: a cullin (<i>LOC_Os04g55030</i>), a gibberellin 20 oxidase 8 (<i>LOC_Os04g55070</i>), and a cyclic nucleotide-gated ion channel (<i>LOC_Os04g55080</i>). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"72 3","pages":"222-231"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653191/pdf/","citationCount":"1","resultStr":"{\"title\":\"Identification of a unique allele in the quantitative trait locus for crown root number in <i>japonica</i> rice from Japan using genome-wide association studies.\",\"authors\":\"Shota Teramoto, Masanori Yamasaki, Yusaku Uga\",\"doi\":\"10.1270/jsbbs.22010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (<i>Oryza sativa</i>), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it <i>qNCR1</i> (<i>quantitative trait locus for Number of Crown Root 1</i>). A linkage disequilibrium map around <i>qNCR1</i> suggested that three candidate genes are involved in crown root number: a cullin (<i>LOC_Os04g55030</i>), a gibberellin 20 oxidase 8 (<i>LOC_Os04g55070</i>), and a cyclic nucleotide-gated ion channel (<i>LOC_Os04g55080</i>). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.</p>\",\"PeriodicalId\":9258,\"journal\":{\"name\":\"Breeding Science\",\"volume\":\"72 3\",\"pages\":\"222-231\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653191/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breeding Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1270/jsbbs.22010\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22010","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification of a unique allele in the quantitative trait locus for crown root number in japonica rice from Japan using genome-wide association studies.
To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (Oryza sativa), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it qNCR1 (quantitative trait locus for Number of Crown Root 1). A linkage disequilibrium map around qNCR1 suggested that three candidate genes are involved in crown root number: a cullin (LOC_Os04g55030), a gibberellin 20 oxidase 8 (LOC_Os04g55070), and a cyclic nucleotide-gated ion channel (LOC_Os04g55080). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.