{"title":"一个简单的具有右审查功能的NONMEM时间到事件模型。","authors":"Quyen Thi Tran, Jung-Woo Chae, Kyun-Seop Bae, Hwi-Yeol Yun","doi":"10.12793/tcp.2022.30.e8","DOIUrl":null,"url":null,"abstract":"<p><p>In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (NONMEMs) to deal with TTE data. Therefore, this tutorial simply explains how to analyze TTE data using NONMEM. We show how to write the code and evaluate the model. We also provide an example of a hands-on model for training.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"30 2","pages":"75-82"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/50/tcp-30-75.PMC9253447.pdf","citationCount":"0","resultStr":"{\"title\":\"A simple time-to-event model with NONMEM featuring right-censoring.\",\"authors\":\"Quyen Thi Tran, Jung-Woo Chae, Kyun-Seop Bae, Hwi-Yeol Yun\",\"doi\":\"10.12793/tcp.2022.30.e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (NONMEMs) to deal with TTE data. Therefore, this tutorial simply explains how to analyze TTE data using NONMEM. We show how to write the code and evaluate the model. We also provide an example of a hands-on model for training.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"30 2\",\"pages\":\"75-82\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/50/tcp-30-75.PMC9253447.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2022.30.e8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2022.30.e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A simple time-to-event model with NONMEM featuring right-censoring.
In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (NONMEMs) to deal with TTE data. Therefore, this tutorial simply explains how to analyze TTE data using NONMEM. We show how to write the code and evaluate the model. We also provide an example of a hands-on model for training.
期刊介绍:
Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.