用于订单约束模型选择的BIC扩展。

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Sociological Methods & Research Pub Date : 2022-05-01 Epub Date: 2019-12-01 DOI:10.1177/0049124119882459
J Mulder, A E Raftery
{"title":"用于订单约束模型选择的BIC扩展。","authors":"J Mulder,&nbsp;A E Raftery","doi":"10.1177/0049124119882459","DOIUrl":null,"url":null,"abstract":"<p><p>The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.</p>","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"51 2","pages":"471-498"},"PeriodicalIF":6.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124119882459","citationCount":"10","resultStr":"{\"title\":\"BIC extensions for order-constrained model selection.\",\"authors\":\"J Mulder,&nbsp;A E Raftery\",\"doi\":\"10.1177/0049124119882459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.</p>\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"51 2\",\"pages\":\"471-498\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0049124119882459\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0049124119882459\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124119882459","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 10

摘要

施瓦茨或贝叶斯信息准则(BIC)是社会科学研究中使用最广泛的模型比较工具之一。然而,BIC不适合评估对感兴趣的参数有顺序约束的模型。本文探讨了两种用于评估订单约束模型的BIC扩展,一种是在订单约束模型下使用截断的单元信息先验,另一种是使用截断的局部单元信息先验。第一个先验以最大似然估计为中心,后一个先验以空值为中心。一些分析表明,基于局部单元信息先验的订单约束BIC作为评估订单约束模型的奥卡姆剃刀效果更好,并且误差概率更低。基于局部单元信息先验的方法在R包“BFpack”中实现,使研究人员能够轻松地将该方法应用于订单约束模型选择。欧洲价值观研究的数据说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BIC extensions for order-constrained model selection.

The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
期刊最新文献
Sharing Big Video Data: Ethics, Methods, and Technology Dynamics of Health Expectancy: An Introduction to the Multiple Multistate Method (MMM) Seeded Topic Models in Digital Archives: Analyzing Interpretations of Immigration in Swedish Newspapers, 1945–2019 A Primer on Deep Learning for Causal Inference Untapped Potential: Designed Digital Trace Data in Online Survey Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1