{"title":"用于订单约束模型选择的BIC扩展。","authors":"J Mulder, A E Raftery","doi":"10.1177/0049124119882459","DOIUrl":null,"url":null,"abstract":"<p><p>The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.</p>","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"51 2","pages":"471-498"},"PeriodicalIF":6.5000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124119882459","citationCount":"10","resultStr":"{\"title\":\"BIC extensions for order-constrained model selection.\",\"authors\":\"J Mulder, A E Raftery\",\"doi\":\"10.1177/0049124119882459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.</p>\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"51 2\",\"pages\":\"471-498\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0049124119882459\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0049124119882459\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124119882459","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
BIC extensions for order-constrained model selection.
The Schwarz or Bayesian information criterion (BIC) is one of the most widely used tools for model comparison in social science research. The BIC however is not suitable for evaluating models with order constraints on the parameters of interest. This paper explores two extensions of the BIC for evaluating order constrained models, one where a truncated unit information prior is used under the order-constrained model, and the other where a truncated local unit information prior is used. The first prior is centered around the maximum likelihood estimate and the latter prior is centered around a null value. Several analyses show that the order-constrained BIC based on the local unit information prior works better as an Occam's razor for evaluating order-constrained models and results in lower error probabilities. The methodology based on the local unit information prior is implemented in the R package 'BFpack' which allows researchers to easily apply the method for order-constrained model selection. The usefulness of the methodology is illustrated using data from the European Values Study.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.