S. Fotso, G. Kolaye, J. Ntahomvukiye, S. Bowong, V. Taffouo
{"title":"气候因子对香蕉-芭蕉害虫相似瓢虫种群动态影响的模拟","authors":"S. Fotso, G. Kolaye, J. Ntahomvukiye, S. Bowong, V. Taffouo","doi":"10.1007/s10441-022-09444-4","DOIUrl":null,"url":null,"abstract":"<div><p><i>Radopholus Similis</i> (<i>R. Similis</i>) or burrowing nematode, is one of the most damaging and widespread nematodes attacking bananas, causing toppling or blackhead disease. A mathematical model for the population dynamics of <i>R. Similis</i> is considered, with the aim of investigating the impact of climatic factors on the growth of <i>R. Similis</i>. In this paper, based on the life cycle of <i>R. Similis</i>, we first propose a mathematical model to study and control the population dynamics of this banana pest. We show also how control terms based on biological and chemical controls can be integrated to reduce the population of <i>R. Similis</i> within banana-plantain roots. Sensitivity analysis was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter <span>\\({\\mathcal{N}}_0\\)</span>, called the basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever <span>\\({\\mathcal{N}}_0\\le 1\\)</span>, while when <span>\\({\\mathcal{N}}_0> 1\\)</span>, the non trivial equilibrium is globally asymptotically stable. After, we extend the proposed model by taking account climatic factors that influence the growth of this pest. Biological and chemical controls are now introduced through impulsive equations. Threshold and equilibria are obtained and global stabilities have been studied. The theoretical results are supported by numerical simulations. Numerical results of model with biological and chemical controls reveal that biological methods are more effective than chemical methods. We also found that the month February is the best time to apply these controls.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling the Influence of Climatic Factors on the Population Dynamics of Radopholus Similis: Banana-Plantain Pest\",\"authors\":\"S. Fotso, G. Kolaye, J. Ntahomvukiye, S. Bowong, V. Taffouo\",\"doi\":\"10.1007/s10441-022-09444-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Radopholus Similis</i> (<i>R. Similis</i>) or burrowing nematode, is one of the most damaging and widespread nematodes attacking bananas, causing toppling or blackhead disease. A mathematical model for the population dynamics of <i>R. Similis</i> is considered, with the aim of investigating the impact of climatic factors on the growth of <i>R. Similis</i>. In this paper, based on the life cycle of <i>R. Similis</i>, we first propose a mathematical model to study and control the population dynamics of this banana pest. We show also how control terms based on biological and chemical controls can be integrated to reduce the population of <i>R. Similis</i> within banana-plantain roots. Sensitivity analysis was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter <span>\\\\({\\\\mathcal{N}}_0\\\\)</span>, called the basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever <span>\\\\({\\\\mathcal{N}}_0\\\\le 1\\\\)</span>, while when <span>\\\\({\\\\mathcal{N}}_0> 1\\\\)</span>, the non trivial equilibrium is globally asymptotically stable. After, we extend the proposed model by taking account climatic factors that influence the growth of this pest. Biological and chemical controls are now introduced through impulsive equations. Threshold and equilibria are obtained and global stabilities have been studied. The theoretical results are supported by numerical simulations. Numerical results of model with biological and chemical controls reveal that biological methods are more effective than chemical methods. We also found that the month February is the best time to apply these controls.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-022-09444-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09444-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modelling the Influence of Climatic Factors on the Population Dynamics of Radopholus Similis: Banana-Plantain Pest
Radopholus Similis (R. Similis) or burrowing nematode, is one of the most damaging and widespread nematodes attacking bananas, causing toppling or blackhead disease. A mathematical model for the population dynamics of R. Similis is considered, with the aim of investigating the impact of climatic factors on the growth of R. Similis. In this paper, based on the life cycle of R. Similis, we first propose a mathematical model to study and control the population dynamics of this banana pest. We show also how control terms based on biological and chemical controls can be integrated to reduce the population of R. Similis within banana-plantain roots. Sensitivity analysis was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter \({\mathcal{N}}_0\), called the basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever \({\mathcal{N}}_0\le 1\), while when \({\mathcal{N}}_0> 1\), the non trivial equilibrium is globally asymptotically stable. After, we extend the proposed model by taking account climatic factors that influence the growth of this pest. Biological and chemical controls are now introduced through impulsive equations. Threshold and equilibria are obtained and global stabilities have been studied. The theoretical results are supported by numerical simulations. Numerical results of model with biological and chemical controls reveal that biological methods are more effective than chemical methods. We also found that the month February is the best time to apply these controls.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.