Carmen Salas , Juan de Dios Bueno-Pérez , Juan Félix López-Téllez , Antonio G. Checa
{"title":"原鳃纲(软体动物:双壳纲)地幔边缘的形态与功能","authors":"Carmen Salas , Juan de Dios Bueno-Pérez , Juan Félix López-Téllez , Antonio G. Checa","doi":"10.1016/j.zool.2022.126027","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed, by optical and transmission electron microscopy, the morphology and function of the mantle edge, including the formation of the periostracum, of ten species of protobranchs. Five species from the order Nuculida, four species from the order Nuculanida and one species from the order Solemyida were studied. A second outer fold, which seems to function as a template for the internal marginal crenulations of the valves, is present in the crenulated species of <em>Nucula</em>. The minute non-crenulated <em>Ennucula aegeensis</em> shows the glandular basal cells displaced toward the periostracal groove, resembling a minute additional fold between the outer and middle folds. Intense secretion of glycocalyx, together with active uptake of particles, have been observed in the inner epithelium of the middle mantle fold and the whole epithelium of the inner mantle fold in all the studied species. Contrary to the rest of the bivalves, all the protobranchs analyzed have two basal cells involved in the formation of the external nanometric pellicle of the periostracum, a character that would support the monophyly of protobranchs. A three-layered pattern is the general rule for the periostracum in protobranchs, like for other bivalves. The presence of pouches of translucent layer inside the tanned dark layer under periostracal folds is characteristic of the species with a folded periostracum; its function is unclear but could give flexibility to the periostracum. The non-nacreous internal shell layer and the presence of translucent pouches under periostracal folds in <em>Sarepta speciosa</em> resemble those found in nuculanids. However, the free periostracum is rather similar to those of <em>N. hanleyi</em> and <em>E. aegeensis,</em> with a continuous vesicular layer. All the latter supports the inclusion of <em>Sarepta</em> in the order Nuculanida but could indicate either a basal lineage or that the translucent vesicular layer is an adaptive trait.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944200622000289/pdfft?md5=630c382aa8f49427ceb87d1436e00bc9&pid=1-s2.0-S0944200622000289-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Form and function of the mantle edge in Protobranchia (Mollusca: Bivalvia)\",\"authors\":\"Carmen Salas , Juan de Dios Bueno-Pérez , Juan Félix López-Téllez , Antonio G. Checa\",\"doi\":\"10.1016/j.zool.2022.126027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyzed, by optical and transmission electron microscopy, the morphology and function of the mantle edge, including the formation of the periostracum, of ten species of protobranchs. Five species from the order Nuculida, four species from the order Nuculanida and one species from the order Solemyida were studied. A second outer fold, which seems to function as a template for the internal marginal crenulations of the valves, is present in the crenulated species of <em>Nucula</em>. The minute non-crenulated <em>Ennucula aegeensis</em> shows the glandular basal cells displaced toward the periostracal groove, resembling a minute additional fold between the outer and middle folds. Intense secretion of glycocalyx, together with active uptake of particles, have been observed in the inner epithelium of the middle mantle fold and the whole epithelium of the inner mantle fold in all the studied species. Contrary to the rest of the bivalves, all the protobranchs analyzed have two basal cells involved in the formation of the external nanometric pellicle of the periostracum, a character that would support the monophyly of protobranchs. A three-layered pattern is the general rule for the periostracum in protobranchs, like for other bivalves. The presence of pouches of translucent layer inside the tanned dark layer under periostracal folds is characteristic of the species with a folded periostracum; its function is unclear but could give flexibility to the periostracum. The non-nacreous internal shell layer and the presence of translucent pouches under periostracal folds in <em>Sarepta speciosa</em> resemble those found in nuculanids. However, the free periostracum is rather similar to those of <em>N. hanleyi</em> and <em>E. aegeensis,</em> with a continuous vesicular layer. All the latter supports the inclusion of <em>Sarepta</em> in the order Nuculanida but could indicate either a basal lineage or that the translucent vesicular layer is an adaptive trait.</p></div>\",\"PeriodicalId\":49330,\"journal\":{\"name\":\"Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0944200622000289/pdfft?md5=630c382aa8f49427ceb87d1436e00bc9&pid=1-s2.0-S0944200622000289-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944200622000289\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200622000289","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Form and function of the mantle edge in Protobranchia (Mollusca: Bivalvia)
We analyzed, by optical and transmission electron microscopy, the morphology and function of the mantle edge, including the formation of the periostracum, of ten species of protobranchs. Five species from the order Nuculida, four species from the order Nuculanida and one species from the order Solemyida were studied. A second outer fold, which seems to function as a template for the internal marginal crenulations of the valves, is present in the crenulated species of Nucula. The minute non-crenulated Ennucula aegeensis shows the glandular basal cells displaced toward the periostracal groove, resembling a minute additional fold between the outer and middle folds. Intense secretion of glycocalyx, together with active uptake of particles, have been observed in the inner epithelium of the middle mantle fold and the whole epithelium of the inner mantle fold in all the studied species. Contrary to the rest of the bivalves, all the protobranchs analyzed have two basal cells involved in the formation of the external nanometric pellicle of the periostracum, a character that would support the monophyly of protobranchs. A three-layered pattern is the general rule for the periostracum in protobranchs, like for other bivalves. The presence of pouches of translucent layer inside the tanned dark layer under periostracal folds is characteristic of the species with a folded periostracum; its function is unclear but could give flexibility to the periostracum. The non-nacreous internal shell layer and the presence of translucent pouches under periostracal folds in Sarepta speciosa resemble those found in nuculanids. However, the free periostracum is rather similar to those of N. hanleyi and E. aegeensis, with a continuous vesicular layer. All the latter supports the inclusion of Sarepta in the order Nuculanida but could indicate either a basal lineage or that the translucent vesicular layer is an adaptive trait.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.