{"title":"双作用免疫抗生素:免疫增强剂对类异戊二烯H酶抑菌效果的计算研究。","authors":"Hitesh Jamod, Kajal Mehta, Arpit Sakariya, Shweta Shoukani, Bharat Kumar Reddy Sanapalli, Vidyasrilekha Yele","doi":"10.1089/adt.2022.038","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more <i>in vitro, in vivo</i>, and molecular dynamics studies to support our findings.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"225-236"},"PeriodicalIF":1.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual Acting Immuno-Antibiotics: Computational Investigation on Antibacterial Efficacy of Immune Boosters Against Isoprenoid H Enzyme.\",\"authors\":\"Hitesh Jamod, Kajal Mehta, Arpit Sakariya, Shweta Shoukani, Bharat Kumar Reddy Sanapalli, Vidyasrilekha Yele\",\"doi\":\"10.1089/adt.2022.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more <i>in vitro, in vivo</i>, and molecular dynamics studies to support our findings.</p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\"20 5\",\"pages\":\"225-236\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2022.038\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2022.038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dual Acting Immuno-Antibiotics: Computational Investigation on Antibacterial Efficacy of Immune Boosters Against Isoprenoid H Enzyme.
Drug-resistant infections have become a serious threat to human health in the past two decades. Global Antimicrobial Surveillance (GLASS) in January 2018 reported widespread antibiotic resistance among 1.5 million people infected with bacteria across 22 countries. According to prominent economist Jim O'Neil, antimicrobial resistance is estimated to kill ∼10 million people affected by microorganisms each year by 2050. Even though multiple therapeutics are now available to treat the infections, more and more bacterial strains have acquired resistance to these treatments through various techniques. Moreover, the decrease in the pipeline of antibacterial medicines under clinical development has become a significant problem. In this scenario, the development of novel antibiotics that act on untapped pathways is necessary to combat the bacterial infections. Isoprenoid H (IspH) synthetase has become an attractive antibacterial target as there is no human homologue. IspH is an enzyme involved in methyl-d-erythritol phosphate (MEP) pathway of isoprenoid synthesis and is conserved in gram-negative bacteria, mycobacteria, and apicomplexans. Since, IspH is a novel therapeutic target, explorations are only just beginning, and despite the progress made in this area, no single IspH inhibitor is available in the market for therapeutic use. In this article, we have repurposed 35 immune boosters against IspH enzyme using methods such as extra-precision docking and Molecular Mechanics Generalized Born Surface Area (MMGBSA). Among them, 4'-fluorouridine was found to be active because of its glide score and significant binding affinity with IspH enzyme. Furthermore, this study requires more in vitro, in vivo, and molecular dynamics studies to support our findings.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts