R Hari Krishna, M N Chandraprabha, Prakash Monika, Tanuja Br, Vishal Chaudhary, C Manjunatha
{"title":"用于生物医学应用的生物分子共轭无机纳米粒子:综述。","authors":"R Hari Krishna, M N Chandraprabha, Prakash Monika, Tanuja Br, Vishal Chaudhary, C Manjunatha","doi":"10.1080/02648725.2022.2147678","DOIUrl":null,"url":null,"abstract":"<p><p>Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, <i>in vitro</i> diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"3611-3652"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review.\",\"authors\":\"R Hari Krishna, M N Chandraprabha, Prakash Monika, Tanuja Br, Vishal Chaudhary, C Manjunatha\",\"doi\":\"10.1080/02648725.2022.2147678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, <i>in vitro</i> diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\" \",\"pages\":\"3611-3652\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02648725.2022.2147678\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2022.2147678","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review.
Last decade has witnessed impressive progress in the fields of medicine and bioengineering with the aid of nanomaterials. Nanomaterials are favoured for their improved bio-chemical as well as mechanical properties with tremendous applications in biomedical domains such as disease diagnosis, targeted drug delivery, medical imaging, in vitro diagnostics, designing innovatory cross-functional implants and regenerative tissue engineering. The current situation insists upon crafting nanotools that are capable of catering to biological needs and construct more efficient biomedical strategies. In the recent years, surface functionalization and capping with biomolecules has initiated substantial interest towards research. In this regard, search of suitable biofunctionalized nanoparticles seem to be like finding pearls from ocean. Conjugating biological molecules with inorganic materials has paved the way for unravelling innovative functional materials with dramatically improved properties and a wide range of uses. Inorganic nanoparticles such as metals, metal oxides, as well as quantum dots have been hybridised or conjugated with biomolecules such as proteins, peptides, carbohydrates, and nucleic acids. The present review reports on various biomolecule functionalized inorganic nanomaterials highlighting the biomolecule-inorganic nanoparticle interaction studies, the mechanism of functionalization, antimicrobial efficacy of the functionalised nanoconjugates and its use in various biomedical applications.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.