纳米载体治疗耐药肿瘤的智能治疗策略综述

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Assay and drug development technologies Pub Date : 2022-07-01 DOI:10.1089/adt.2022.025
Abdulsalam A Alqahtani, Hira Aslam, Shazia Shukrullah, Hareem Fatima, Muhammad Yasin Naz, Saifur Rahman, Mater H Mahnashi, Muhammad Irfan
{"title":"纳米载体治疗耐药肿瘤的智能治疗策略综述","authors":"Abdulsalam A Alqahtani,&nbsp;Hira Aslam,&nbsp;Shazia Shukrullah,&nbsp;Hareem Fatima,&nbsp;Muhammad Yasin Naz,&nbsp;Saifur Rahman,&nbsp;Mater H Mahnashi,&nbsp;Muhammad Irfan","doi":"10.1089/adt.2022.025","DOIUrl":null,"url":null,"abstract":"<p><p>Combination therapy has become much more effective in treating cancer because it produces combinatorial anticancer results, lowers specific drug-related toxicities, and inhibits multidrug resistivity through several modes of action. Combined drug delivery (CDD) to cancerous tissues, primarily based on nanotechnology, has developed as a viable method in recent years, surpassing various biomedical, biophysical, and biological obstacles that the body erects to prevent antitumor drugs from reaching their target tissues. In a combined strategy, the prolonged, regulated, and targeted administration of chemotherapeutic medicines improves therapeutic anticancer benefits while reducing drug-related adverse effects. CDD systems have several advantages over traditional drug systems, such as improved solubility, higher permeability for traveling through biomembranes, a significantly longer half-life to expand the treatment time, and low cytotoxicity. CDDs are mostly used to treat neurological, cardiovascular, neoplastic, infectious, and inflammatory diseases. Many CDDs are designed to enhance hydrophilicity to improve transportation inside or across biomembranes, particularly the cornea and skin. CDDs could be delivered to particular cells, organs, or tissues, resulting in increased bioavailability. The most widely utilized nanocarriers for CDDs of anticancer medicines are summarized in this review. This study also covers the chemical or enzymatic decomposition of CDDs and their bioactivity and pharmacokinetics. Additional clinical trials will enhance the usefulness of CDDs in treating drug-resistant tumors.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":"20 5","pages":"191-210"},"PeriodicalIF":1.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review.\",\"authors\":\"Abdulsalam A Alqahtani,&nbsp;Hira Aslam,&nbsp;Shazia Shukrullah,&nbsp;Hareem Fatima,&nbsp;Muhammad Yasin Naz,&nbsp;Saifur Rahman,&nbsp;Mater H Mahnashi,&nbsp;Muhammad Irfan\",\"doi\":\"10.1089/adt.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combination therapy has become much more effective in treating cancer because it produces combinatorial anticancer results, lowers specific drug-related toxicities, and inhibits multidrug resistivity through several modes of action. Combined drug delivery (CDD) to cancerous tissues, primarily based on nanotechnology, has developed as a viable method in recent years, surpassing various biomedical, biophysical, and biological obstacles that the body erects to prevent antitumor drugs from reaching their target tissues. In a combined strategy, the prolonged, regulated, and targeted administration of chemotherapeutic medicines improves therapeutic anticancer benefits while reducing drug-related adverse effects. CDD systems have several advantages over traditional drug systems, such as improved solubility, higher permeability for traveling through biomembranes, a significantly longer half-life to expand the treatment time, and low cytotoxicity. CDDs are mostly used to treat neurological, cardiovascular, neoplastic, infectious, and inflammatory diseases. Many CDDs are designed to enhance hydrophilicity to improve transportation inside or across biomembranes, particularly the cornea and skin. CDDs could be delivered to particular cells, organs, or tissues, resulting in increased bioavailability. The most widely utilized nanocarriers for CDDs of anticancer medicines are summarized in this review. This study also covers the chemical or enzymatic decomposition of CDDs and their bioactivity and pharmacokinetics. Additional clinical trials will enhance the usefulness of CDDs in treating drug-resistant tumors.</p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\"20 5\",\"pages\":\"191-210\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2022.025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2022.025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

联合治疗在治疗癌症方面已经变得更加有效,因为它可以产生联合抗癌效果,降低特定药物相关的毒性,并通过几种作用模式抑制多药电阻率。近年来,主要基于纳米技术的肿瘤组织联合给药(CDD)已经发展成为一种可行的方法,超越了人体为阻止抗肿瘤药物到达目标组织而设置的各种生物医学、生物物理和生物学障碍。在一个联合策略中,化疗药物的长期、调控和靶向给药提高了抗癌疗效,同时减少了药物相关的不良反应。与传统药物系统相比,CDD系统具有几个优点,例如溶解度更好,通过生物膜的渗透性更高,半衰期更长以延长治疗时间,并且细胞毒性低。cdd主要用于治疗神经、心血管、肿瘤、感染性和炎症性疾病。许多cdd被设计为增强亲水性,以改善生物膜内或跨生物膜的运输,特别是角膜和皮肤。cdd可以输送到特定的细胞、器官或组织,从而提高生物利用度。本文综述了目前应用最广泛的抗癌药物CDDs纳米载体。本研究还包括化学或酶分解的cdd及其生物活性和药代动力学。更多的临床试验将增强cdd治疗耐药肿瘤的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review.

Combination therapy has become much more effective in treating cancer because it produces combinatorial anticancer results, lowers specific drug-related toxicities, and inhibits multidrug resistivity through several modes of action. Combined drug delivery (CDD) to cancerous tissues, primarily based on nanotechnology, has developed as a viable method in recent years, surpassing various biomedical, biophysical, and biological obstacles that the body erects to prevent antitumor drugs from reaching their target tissues. In a combined strategy, the prolonged, regulated, and targeted administration of chemotherapeutic medicines improves therapeutic anticancer benefits while reducing drug-related adverse effects. CDD systems have several advantages over traditional drug systems, such as improved solubility, higher permeability for traveling through biomembranes, a significantly longer half-life to expand the treatment time, and low cytotoxicity. CDDs are mostly used to treat neurological, cardiovascular, neoplastic, infectious, and inflammatory diseases. Many CDDs are designed to enhance hydrophilicity to improve transportation inside or across biomembranes, particularly the cornea and skin. CDDs could be delivered to particular cells, organs, or tissues, resulting in increased bioavailability. The most widely utilized nanocarriers for CDDs of anticancer medicines are summarized in this review. This study also covers the chemical or enzymatic decomposition of CDDs and their bioactivity and pharmacokinetics. Additional clinical trials will enhance the usefulness of CDDs in treating drug-resistant tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
期刊最新文献
A Time of Transition: Looking Back with Gratitude, Forward with Optimism. Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation. Ligandrol Ameliorates High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes Mellitus and Prevents Pancreatic Islets Degeneration. Unlocking Antioxidant-Anticancer Synergy: An Exploration of Therapeutic Bioactives from Methanolic Extracts of Rubus ellipticus and Boerhavia diffusa Using HeLa Cell Line. Drug Repurposing Patent Applications: April-June 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1