Nicole F Clark, Andrew W Taylor-Robinson, Kirsten Heimann
{"title":"叶绿素能提高β -d- n4 -羟基胞苷相对于n -羟基胞苷的安全性吗? n -羟基胞苷是SARS-CoV-2抗病毒药物莫努皮拉韦的活性成分。","authors":"Nicole F Clark, Andrew W Taylor-Robinson, Kirsten Heimann","doi":"10.1177/20420986221107753","DOIUrl":null,"url":null,"abstract":"<p><p><b>Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the safety of the antiviral Molnupiravir, used to treat COVID-19 disease?</b> Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and thereby create potential host cell damage (through genotoxicity and DNA stressors). In our opinion, this side effect of treatment could be reduced if the antiviral was taken as a combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins might improve the overall effectiveness of molnupiravir, typically used to treat patients suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral properties, treatment with chlorophyllins may enhance the overall antiviral effect via a mechanism different to molnupiravir.</p>","PeriodicalId":23012,"journal":{"name":"Therapeutic Advances in Drug Safety","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/17/10.1177_20420986221107753.PMC9309465.pdf","citationCount":"1","resultStr":"{\"title\":\"Could chlorophyllins improve the safety profile of beta-d-N4-hydroxycytidine versus N-hydroxycytidine, the active ingredient of the SARS-CoV-2 antiviral molnupiravir?\",\"authors\":\"Nicole F Clark, Andrew W Taylor-Robinson, Kirsten Heimann\",\"doi\":\"10.1177/20420986221107753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the safety of the antiviral Molnupiravir, used to treat COVID-19 disease?</b> Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and thereby create potential host cell damage (through genotoxicity and DNA stressors). In our opinion, this side effect of treatment could be reduced if the antiviral was taken as a combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins might improve the overall effectiveness of molnupiravir, typically used to treat patients suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral properties, treatment with chlorophyllins may enhance the overall antiviral effect via a mechanism different to molnupiravir.</p>\",\"PeriodicalId\":23012,\"journal\":{\"name\":\"Therapeutic Advances in Drug Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/17/10.1177_20420986221107753.PMC9309465.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic Advances in Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20420986221107753\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20420986221107753","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Could chlorophyllins improve the safety profile of beta-d-N4-hydroxycytidine versus N-hydroxycytidine, the active ingredient of the SARS-CoV-2 antiviral molnupiravir?
Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the safety of the antiviral Molnupiravir, used to treat COVID-19 disease? Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and thereby create potential host cell damage (through genotoxicity and DNA stressors). In our opinion, this side effect of treatment could be reduced if the antiviral was taken as a combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins might improve the overall effectiveness of molnupiravir, typically used to treat patients suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral properties, treatment with chlorophyllins may enhance the overall antiviral effect via a mechanism different to molnupiravir.
期刊介绍:
Therapeutic Advances in Drug Safety delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies pertaining to the safe use of drugs in patients.
The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in drug safety, providing a forum in print and online for publishing the highest quality articles in this area. The editors welcome articles of current interest on research across all areas of drug safety, including therapeutic drug monitoring, pharmacoepidemiology, adverse drug reactions, drug interactions, pharmacokinetics, pharmacovigilance, medication/prescribing errors, risk management, ethics and regulation.