mcpip -1介导的中性粒细胞免疫抑制加重急性细菌性腹膜炎和肝损伤

IF 4.7 3区 医学 Q2 IMMUNOLOGY Journal of Innate Immunity Pub Date : 2023-01-01 Epub Date: 2022-10-21 DOI:10.1159/000526784
Jian Lin, Zhanjun Lu, Gengfeng Li, Cui Zhang, Huiying Lu, Sheng Gao, Ruixin Zhu, Hailiang Huang, Konrad Aden, Jianhua Wang, Yingzi Cong, Huili Wu, Zhanju Liu
{"title":"mcpip -1介导的中性粒细胞免疫抑制加重急性细菌性腹膜炎和肝损伤","authors":"Jian Lin, Zhanjun Lu, Gengfeng Li, Cui Zhang, Huiying Lu, Sheng Gao, Ruixin Zhu, Hailiang Huang, Konrad Aden, Jianhua Wang, Yingzi Cong, Huili Wu, Zhanju Liu","doi":"10.1159/000526784","DOIUrl":null,"url":null,"abstract":"<p><p>Monocyte chemotactic protein-1-induced protein-1 (MCPIP-1) is highly expressed in activated immune cells and negatively regulates immune responses, while the mechanisms underlying the immunoregulation of neutrophils in acute bacterial infection and liver injury remain elusive. Here, we examined the role of MCPIP-1 in regulating neutrophil functions during acute bacterial peritonitis and liver injury. Mice with myeloid cell-specific overexpression (McpipMye-tg) or knockout (McpipΔMye) of MCPIP-1 were generated. We found that reactive oxygen species and myeloperoxidase production, formation of neutrophil extracellular traps, and migratory capacity were deficient in McpipMye-tg neutrophils but enhanced in McpipΔMye neutrophils. The recruitment of neutrophils and pathogen clearance were markedly suppressed in McpipMye-tg mice following intraperitoneal infection with Salmonella typhimurium while intensified in McpipΔMye mice. Severe acute S. typhimurium-infected peritonitis and liver injury occurred in McpipMye-tg mice but were alleviated in McpipΔMye mice. RNA sequencing, RNA-binding protein immunoprecipitation and qPCR analysis revealed that MCPIP-1 downregulated the protective functions of neutrophils via degrading the mRNA of cold inducible RNA-binding protein. Consistently, MCPIP-1 was highly expressed in neutrophils of patients with acute infectious diseases, especially in those with liver injury. Collectively, we uncover that MCPIP-1 negatively regulates the antibacterial capacities of neutrophils, leading to exacerbating severe acute bacterial peritonitis and liver injury. It may serve as a candidate target for maintaining neutrophil homeostasis to control acute infectious diseases.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643898/pdf/","citationCount":"0","resultStr":"{\"title\":\"MCPIP-1-Mediated Immunosuppression of Neutrophils Exacerbates Acute Bacterial Peritonitis and Liver Injury.\",\"authors\":\"Jian Lin, Zhanjun Lu, Gengfeng Li, Cui Zhang, Huiying Lu, Sheng Gao, Ruixin Zhu, Hailiang Huang, Konrad Aden, Jianhua Wang, Yingzi Cong, Huili Wu, Zhanju Liu\",\"doi\":\"10.1159/000526784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monocyte chemotactic protein-1-induced protein-1 (MCPIP-1) is highly expressed in activated immune cells and negatively regulates immune responses, while the mechanisms underlying the immunoregulation of neutrophils in acute bacterial infection and liver injury remain elusive. Here, we examined the role of MCPIP-1 in regulating neutrophil functions during acute bacterial peritonitis and liver injury. Mice with myeloid cell-specific overexpression (McpipMye-tg) or knockout (McpipΔMye) of MCPIP-1 were generated. We found that reactive oxygen species and myeloperoxidase production, formation of neutrophil extracellular traps, and migratory capacity were deficient in McpipMye-tg neutrophils but enhanced in McpipΔMye neutrophils. The recruitment of neutrophils and pathogen clearance were markedly suppressed in McpipMye-tg mice following intraperitoneal infection with Salmonella typhimurium while intensified in McpipΔMye mice. Severe acute S. typhimurium-infected peritonitis and liver injury occurred in McpipMye-tg mice but were alleviated in McpipΔMye mice. RNA sequencing, RNA-binding protein immunoprecipitation and qPCR analysis revealed that MCPIP-1 downregulated the protective functions of neutrophils via degrading the mRNA of cold inducible RNA-binding protein. Consistently, MCPIP-1 was highly expressed in neutrophils of patients with acute infectious diseases, especially in those with liver injury. Collectively, we uncover that MCPIP-1 negatively regulates the antibacterial capacities of neutrophils, leading to exacerbating severe acute bacterial peritonitis and liver injury. It may serve as a candidate target for maintaining neutrophil homeostasis to control acute infectious diseases.</p>\",\"PeriodicalId\":16113,\"journal\":{\"name\":\"Journal of Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innate Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000526784\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000526784","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单核细胞趋化蛋白-1诱导蛋白-1 (MCPIP-1)在活化的免疫细胞中高表达并负性调节免疫应答,而中性粒细胞在急性细菌感染和肝损伤中的免疫调节机制尚不清楚。在这里,我们研究了MCPIP-1在急性细菌性腹膜炎和肝损伤期间调节中性粒细胞功能的作用。产生骨髓细胞特异性过表达(mcpipye -tg)或敲除(McpipΔMye) MCPIP-1的小鼠。我们发现McpipMye-tg中性粒细胞缺乏活性氧和髓过氧化物酶的产生、中性粒细胞胞外陷阱的形成和迁移能力,但McpipΔMye中性粒细胞增强。腹腔感染鼠伤寒沙门菌后,McpipMye-tg小鼠的中性粒细胞募集和病原体清除明显受到抑制,而McpipΔMye小鼠的中性粒细胞募集和病原体清除明显增强。McpipMye-tg小鼠出现严重急性鼠伤寒沙门氏菌感染的腹膜炎和肝损伤,McpipΔMye小鼠则有所缓解。RNA测序、RNA结合蛋白免疫沉淀和qPCR分析显示,MCPIP-1通过降解冷诱导RNA结合蛋白mRNA下调中性粒细胞的保护功能。MCPIP-1在急性感染性疾病患者,尤其是肝损伤患者的中性粒细胞中一致高表达。总的来说,我们发现MCPIP-1负调控中性粒细胞的抗菌能力,导致严重的急性细菌性腹膜炎和肝损伤加剧。它可能作为维持中性粒细胞稳态以控制急性感染性疾病的候选靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCPIP-1-Mediated Immunosuppression of Neutrophils Exacerbates Acute Bacterial Peritonitis and Liver Injury.

Monocyte chemotactic protein-1-induced protein-1 (MCPIP-1) is highly expressed in activated immune cells and negatively regulates immune responses, while the mechanisms underlying the immunoregulation of neutrophils in acute bacterial infection and liver injury remain elusive. Here, we examined the role of MCPIP-1 in regulating neutrophil functions during acute bacterial peritonitis and liver injury. Mice with myeloid cell-specific overexpression (McpipMye-tg) or knockout (McpipΔMye) of MCPIP-1 were generated. We found that reactive oxygen species and myeloperoxidase production, formation of neutrophil extracellular traps, and migratory capacity were deficient in McpipMye-tg neutrophils but enhanced in McpipΔMye neutrophils. The recruitment of neutrophils and pathogen clearance were markedly suppressed in McpipMye-tg mice following intraperitoneal infection with Salmonella typhimurium while intensified in McpipΔMye mice. Severe acute S. typhimurium-infected peritonitis and liver injury occurred in McpipMye-tg mice but were alleviated in McpipΔMye mice. RNA sequencing, RNA-binding protein immunoprecipitation and qPCR analysis revealed that MCPIP-1 downregulated the protective functions of neutrophils via degrading the mRNA of cold inducible RNA-binding protein. Consistently, MCPIP-1 was highly expressed in neutrophils of patients with acute infectious diseases, especially in those with liver injury. Collectively, we uncover that MCPIP-1 negatively regulates the antibacterial capacities of neutrophils, leading to exacerbating severe acute bacterial peritonitis and liver injury. It may serve as a candidate target for maintaining neutrophil homeostasis to control acute infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Innate Immunity
Journal of Innate Immunity 医学-免疫学
CiteScore
10.50
自引率
1.90%
发文量
35
审稿时长
7.5 months
期刊介绍: The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.
期刊最新文献
C4b-Binding Protein and Factor H Inhibit Inflammasome Activation during Group A Streptococci Infection in Human Cells. Inhibition of WNK kinases in NK cells disrupts cellular osmoregulation and control of tumor metastasis. Stat3 regulates developmental hematopoiesis and impacts myeloid cell function via canonical and non-canonical modalities. Hydrogen peroxide is responsible for the cytotoxic effects of Streptococcus pneumoniae on primary microglia in the absence of pneumolysin. Association of Vitamin D with Severity and Outcome of COVID-19: Clinical and Experimental Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1