Sarah Morceau, Angélique Faugère, Etienne Coutureau, Mathieu Wolff
{"title":"丘脑中背侧支持基于刺激-结果关联的适应性反应","authors":"Sarah Morceau, Angélique Faugère, Etienne Coutureau, Mathieu Wolff","doi":"10.1016/j.crneur.2022.100057","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to engage into flexible behaviors is crucial in dynamic environments. We recently showed that in addition to the well described role of the orbitofrontal cortex (OFC), its thalamic input from the submedius thalamic nucleus (Sub) also contributes to adaptive responding during Pavlovian degradation. In the present study, we examined the role of the mediodorsal thalamus (MD) which is the other main thalamic input to the OFC. To this end, we assessed the effect of both pre- and post-training MD lesions in rats performing a Pavlovian contingency degradation task. Pre-training lesions mildly impeded the establishment of stimulus-outcome associations during the initial training of Pavlovian conditioning without interfering with Pavlovian degradation training when the sensory feedback provided by the outcome rewards were available to animals. However, we found that both pre- and post-training MD lesions produced a selective impairment during a test conducted under extinction conditions, during which only current mental representation could guide behavior. Altogether, these data suggest a role for the MD in the successful encoding and representation of Pavlovian associations.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"3 ","pages":"Article 100057"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/e1/main.PMC9587292.pdf","citationCount":"0","resultStr":"{\"title\":\"The mediodorsal thalamus supports adaptive responding based on stimulus-outcome associations\",\"authors\":\"Sarah Morceau, Angélique Faugère, Etienne Coutureau, Mathieu Wolff\",\"doi\":\"10.1016/j.crneur.2022.100057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to engage into flexible behaviors is crucial in dynamic environments. We recently showed that in addition to the well described role of the orbitofrontal cortex (OFC), its thalamic input from the submedius thalamic nucleus (Sub) also contributes to adaptive responding during Pavlovian degradation. In the present study, we examined the role of the mediodorsal thalamus (MD) which is the other main thalamic input to the OFC. To this end, we assessed the effect of both pre- and post-training MD lesions in rats performing a Pavlovian contingency degradation task. Pre-training lesions mildly impeded the establishment of stimulus-outcome associations during the initial training of Pavlovian conditioning without interfering with Pavlovian degradation training when the sensory feedback provided by the outcome rewards were available to animals. However, we found that both pre- and post-training MD lesions produced a selective impairment during a test conducted under extinction conditions, during which only current mental representation could guide behavior. Altogether, these data suggest a role for the MD in the successful encoding and representation of Pavlovian associations.</p></div>\",\"PeriodicalId\":72752,\"journal\":{\"name\":\"Current research in neurobiology\",\"volume\":\"3 \",\"pages\":\"Article 100057\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/e1/main.PMC9587292.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current research in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665945X22000304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X22000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mediodorsal thalamus supports adaptive responding based on stimulus-outcome associations
The ability to engage into flexible behaviors is crucial in dynamic environments. We recently showed that in addition to the well described role of the orbitofrontal cortex (OFC), its thalamic input from the submedius thalamic nucleus (Sub) also contributes to adaptive responding during Pavlovian degradation. In the present study, we examined the role of the mediodorsal thalamus (MD) which is the other main thalamic input to the OFC. To this end, we assessed the effect of both pre- and post-training MD lesions in rats performing a Pavlovian contingency degradation task. Pre-training lesions mildly impeded the establishment of stimulus-outcome associations during the initial training of Pavlovian conditioning without interfering with Pavlovian degradation training when the sensory feedback provided by the outcome rewards were available to animals. However, we found that both pre- and post-training MD lesions produced a selective impairment during a test conducted under extinction conditions, during which only current mental representation could guide behavior. Altogether, these data suggest a role for the MD in the successful encoding and representation of Pavlovian associations.