计数数据的灵活项目响应模型:计数阈值模型。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2022-11-01 Epub Date: 2022-08-07 DOI:10.1177/01466216221108124
Gerhard Tutz
{"title":"计数数据的灵活项目响应模型:计数阈值模型。","authors":"Gerhard Tutz","doi":"10.1177/01466216221108124","DOIUrl":null,"url":null,"abstract":"<p><p>A new item response theory model for count data is introduced. In contrast to models in common use, it does not assume a fixed distribution for the responses as, for example, the Poisson count model and extensions do. The distribution of responses is determined by difficulty functions which reflect the characteristics of items in a flexible way. Sparse parameterizations are obtained by choosing fixed parametric difficulty functions, more general versions use an approximation by basis functions. The model can be seen as constructed from binary response models as the Rasch model or the normal-ogive model to which it reduces if responses are dichotomized. It is demonstrated that the model competes well with advanced count data models. Simulations demonstrate that parameters and response distributions are recovered well. An application shows the flexibility of the model to account for strongly varying distributions of responses.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"46 8","pages":"643-661"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574081/pdf/","citationCount":"1","resultStr":"{\"title\":\"Flexible Item Response Models for Count Data: The Count Thresholds Model.\",\"authors\":\"Gerhard Tutz\",\"doi\":\"10.1177/01466216221108124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new item response theory model for count data is introduced. In contrast to models in common use, it does not assume a fixed distribution for the responses as, for example, the Poisson count model and extensions do. The distribution of responses is determined by difficulty functions which reflect the characteristics of items in a flexible way. Sparse parameterizations are obtained by choosing fixed parametric difficulty functions, more general versions use an approximation by basis functions. The model can be seen as constructed from binary response models as the Rasch model or the normal-ogive model to which it reduces if responses are dichotomized. It is demonstrated that the model competes well with advanced count data models. Simulations demonstrate that parameters and response distributions are recovered well. An application shows the flexibility of the model to account for strongly varying distributions of responses.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":\"46 8\",\"pages\":\"643-661\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574081/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216221108124\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221108124","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种新的计数数据项目反应理论模型。与常用的模型相比,它并没有像泊松计数模型和扩展那样假设响应的固定分布。响应的分布由难度函数决定,该函数以灵活的方式反映项目的特征。稀疏参数化是通过选择固定的参数难度函数来获得的,更一般的版本使用基函数的近似。该模型可以被视为是由二元响应模型构建的,如Rasch模型或正态ogive模型,如果响应是二分的,则该模型可以简化为二元响应。结果表明,该模型与先进的计数数据模型具有很好的竞争性。仿真结果表明,参数和响应分布恢复良好。一个应用程序显示了该模型的灵活性,可以考虑强烈变化的响应分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Item Response Models for Count Data: The Count Thresholds Model.

A new item response theory model for count data is introduced. In contrast to models in common use, it does not assume a fixed distribution for the responses as, for example, the Poisson count model and extensions do. The distribution of responses is determined by difficulty functions which reflect the characteristics of items in a flexible way. Sparse parameterizations are obtained by choosing fixed parametric difficulty functions, more general versions use an approximation by basis functions. The model can be seen as constructed from binary response models as the Rasch model or the normal-ogive model to which it reduces if responses are dichotomized. It is demonstrated that the model competes well with advanced count data models. Simulations demonstrate that parameters and response distributions are recovered well. An application shows the flexibility of the model to account for strongly varying distributions of responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1