MiR-106b-5p 可调控精原干细胞重编程为 iPSC(诱导多能干细胞)样细胞

Q2 Biochemistry, Genetics and Molecular Biology Iranian Biomedical Journal Pub Date : 2022-07-01 DOI:10.52547/ibj.3594
Amir Hossein Hasani Fard, Mahmoud Valizadeh, Zohreh Mazaheri, Jalil Hosseini
{"title":"MiR-106b-5p 可调控精原干细胞重编程为 iPSC(诱导多能干细胞)样细胞","authors":"Amir Hossein Hasani Fard, Mahmoud Valizadeh, Zohreh Mazaheri, Jalil Hosseini","doi":"10.52547/ibj.3594","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells.</p><p><strong>Methods: </strong>We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods.</p><p><strong>Results: </strong>Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency.</p><p><strong>Conclusion: </strong>Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":" ","pages":"291-300"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432470/pdf/","citationCount":"0","resultStr":"{\"title\":\"MiR-106b-5p Regulates the Reprogramming of Spermatogonial Stem Cells into iPSC (Induced Pluripotent Stem Cell)-Like Cells\",\"authors\":\"Amir Hossein Hasani Fard, Mahmoud Valizadeh, Zohreh Mazaheri, Jalil Hosseini\",\"doi\":\"10.52547/ibj.3594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells.</p><p><strong>Methods: </strong>We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods.</p><p><strong>Results: </strong>Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency.</p><p><strong>Conclusion: </strong>Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.</p>\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":\" \",\"pages\":\"291-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ibj.3594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ibj.3594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

背景:近年来,重编程技术在提高效率方面取得了显著进展,其方法已从已知的转基因因子发展到仅有几种 miRNA。然而,人们对这种重编程技术背后的关键因素和生物网络了解甚少。本研究旨在探讨miR-106b-5p在调控精原干细胞(SSCs)转化为诱导多能干细胞(iPSC)样细胞方面的潜力:我们使用精原干细胞,因为在确定的培养条件下,精原干细胞可诱导多能性,而且与其他成体干细胞相比,精原干细胞存在一些问题。由于信号传导和转录后基因调控对于多能性调控至关重要,我们追踪了Oct-4、Sox-2、Klf-4、c-Myc和Nanog(OSKMN)的表达。此外,我们还利用生物信息学方法研究了 miR-106b-5p 的靶标:结果表明,转染了 miR-106b-5p 的 SSCs 增加了 OSKMN 因子的表达,明显高于阴性对照组。此外,利用功能性miRNA富集分析、在线工具和数据库,我们预测miR-106b-5p靶向一个名为MAPK1/ERK2的信号通路基因,该基因与调控干细胞多能性有关:总之,我们的数据表明,miR-106b-5p 可调控造血干细胞重编程为 iPSC 样细胞。此外,SSCs体外发育方面值得注意的进展表明,未来的临床试验有望获得储备和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-106b-5p Regulates the Reprogramming of Spermatogonial Stem Cells into iPSC (Induced Pluripotent Stem Cell)-Like Cells

Background: Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells.

Methods: We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods.

Results: Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency.

Conclusion: Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Biomedical Journal
Iranian Biomedical Journal Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.20
自引率
0.00%
发文量
42
审稿时长
8 weeks
期刊最新文献
Anti-Nociceptive Effect of Sufentanil Polymeric Dissolving Microneedle on Male Mice by Hot Plate Technique In silico and in vivo Investigations of the Immunoreactivity of Klebsiella pneumoniae OmpA Protein as a Vaccine Candidate Deciphering Molecular Mechanisms of Cutaneous Leishmaniasis, Pathogenesis and Drug Repurposing through Systems Biology Tryptophan and Its Derived Metabolites as Biomarkers for Tuberculosis Disease: A Systematic Review Stability of Neutralizing Antibody of PastoCoAd Vaccine Candidates against a Variant of Concern of SARS-CoV-2 in Animal Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1