{"title":"一种基于电化学的尿酸检测方法。","authors":"Yuetong Zhao, Xia Song","doi":"10.1155/2022/8555842","DOIUrl":null,"url":null,"abstract":"<p><p>Point-of-care technology (POCT) is an important method in clinical testing in the future, which can achieve the purpose of rapid analysis. In this work, we assembled an electrochemical POC sensor for uric acid (UA) by surface modification of a screen-printed electrode. Copper nanowires were used as electrode modifiers to achieve high-performance electrochemical oxidation of UA. This electrochemical sensor can achieve linear detection of UA in the range of 10 <i>μ</i>M to 2 mM. The detection limit of the sensor was calculated to be 2 <i>μ</i>M. Although the detection performance of this sensor is not competitive with high-performance electrochemical sensors, it has been able to meet the needs of POC detection. At the same time, the sensor has excellent anti-interference performance. It has also been used successfully to test urine and serum samples from healthy and gout patients.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338848/pdf/","citationCount":"4","resultStr":"{\"title\":\"An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement.\",\"authors\":\"Yuetong Zhao, Xia Song\",\"doi\":\"10.1155/2022/8555842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Point-of-care technology (POCT) is an important method in clinical testing in the future, which can achieve the purpose of rapid analysis. In this work, we assembled an electrochemical POC sensor for uric acid (UA) by surface modification of a screen-printed electrode. Copper nanowires were used as electrode modifiers to achieve high-performance electrochemical oxidation of UA. This electrochemical sensor can achieve linear detection of UA in the range of 10 <i>μ</i>M to 2 mM. The detection limit of the sensor was calculated to be 2 <i>μ</i>M. Although the detection performance of this sensor is not competitive with high-performance electrochemical sensors, it has been able to meet the needs of POC detection. At the same time, the sensor has excellent anti-interference performance. It has also been used successfully to test urine and serum samples from healthy and gout patients.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338848/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8555842\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/8555842","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement.
Point-of-care technology (POCT) is an important method in clinical testing in the future, which can achieve the purpose of rapid analysis. In this work, we assembled an electrochemical POC sensor for uric acid (UA) by surface modification of a screen-printed electrode. Copper nanowires were used as electrode modifiers to achieve high-performance electrochemical oxidation of UA. This electrochemical sensor can achieve linear detection of UA in the range of 10 μM to 2 mM. The detection limit of the sensor was calculated to be 2 μM. Although the detection performance of this sensor is not competitive with high-performance electrochemical sensors, it has been able to meet the needs of POC detection. At the same time, the sensor has excellent anti-interference performance. It has also been used successfully to test urine and serum samples from healthy and gout patients.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.