Leah Grout, Anja Mizdrak, Nhung Nghiem, Amanda C Jones, Tony Blakely, Cliona Ni Mhurchu, Christine Cleghorn
{"title":"垃圾食品和含糖饮料税对新西兰人口健康、卫生系统成本和温室气体排放的潜在影响:一项模型研究。","authors":"Leah Grout, Anja Mizdrak, Nhung Nghiem, Amanda C Jones, Tony Blakely, Cliona Ni Mhurchu, Christine Cleghorn","doi":"10.1136/bmjnph-2021-000376","DOIUrl":null,"url":null,"abstract":"<p><p>Poor diet is a major risk factor for excess weight gain and obesity-related diseases, including cardiovascular diseases, type 2 diabetes mellitus, osteoarthritis and several cancers. This paper aims to assess the potential impacts of real-world food and beverage taxes on change in dietary risk factors, health gains (in quality-adjusted life years (QALYs)), health system costs and greenhouse gas (GHG) emissions as if they had all been implemented in New Zealand (NZ). Ten taxes or tax packages were modelled. A proportional multistate life table model was used to predict resultant QALYs and costs over the remaining lifespan of the NZ population alive in 2011, as well as GHG emissions. QALYs ranged from 12.5 (95% uncertainty interval (UI) 10.2 to 15.0; 3% discount rate) per 1000 population for the import tax on sugar-sweetened beverages (SSB) in Palau to 143 (95% UI 118 to 171) per 1000 population for the excise duties on saturated fat, chocolate and sweets in Denmark, while health expenditure savings ranged from 2011 NZ$245 (95% UI 188 to 310; 2020 US$185) per capita to NZ$2770 (95% UI 2140 to 3480; US$2100) per capita, respectively. The modelled taxes resulted in decreases in GHG emissions from baseline diets, ranging from -0.2% for the tax on SSB in Barbados to -2.8% for Denmark's tax package. There is strong evidence for the implementation of food and beverage tax packages in NZ or similar high-income settings.</p>","PeriodicalId":36307,"journal":{"name":"BMJ Nutrition, Prevention and Health","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/e4/bmjnph-2021-000376.PMC9237873.pdf","citationCount":"3","resultStr":"{\"title\":\"Potential effect of real-world junk food and sugar-sweetened beverage taxes on population health, health system costs and greenhouse gas emissions in New Zealand: a modelling study.\",\"authors\":\"Leah Grout, Anja Mizdrak, Nhung Nghiem, Amanda C Jones, Tony Blakely, Cliona Ni Mhurchu, Christine Cleghorn\",\"doi\":\"10.1136/bmjnph-2021-000376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poor diet is a major risk factor for excess weight gain and obesity-related diseases, including cardiovascular diseases, type 2 diabetes mellitus, osteoarthritis and several cancers. This paper aims to assess the potential impacts of real-world food and beverage taxes on change in dietary risk factors, health gains (in quality-adjusted life years (QALYs)), health system costs and greenhouse gas (GHG) emissions as if they had all been implemented in New Zealand (NZ). Ten taxes or tax packages were modelled. A proportional multistate life table model was used to predict resultant QALYs and costs over the remaining lifespan of the NZ population alive in 2011, as well as GHG emissions. QALYs ranged from 12.5 (95% uncertainty interval (UI) 10.2 to 15.0; 3% discount rate) per 1000 population for the import tax on sugar-sweetened beverages (SSB) in Palau to 143 (95% UI 118 to 171) per 1000 population for the excise duties on saturated fat, chocolate and sweets in Denmark, while health expenditure savings ranged from 2011 NZ$245 (95% UI 188 to 310; 2020 US$185) per capita to NZ$2770 (95% UI 2140 to 3480; US$2100) per capita, respectively. The modelled taxes resulted in decreases in GHG emissions from baseline diets, ranging from -0.2% for the tax on SSB in Barbados to -2.8% for Denmark's tax package. There is strong evidence for the implementation of food and beverage tax packages in NZ or similar high-income settings.</p>\",\"PeriodicalId\":36307,\"journal\":{\"name\":\"BMJ Nutrition, Prevention and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/e4/bmjnph-2021-000376.PMC9237873.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Nutrition, Prevention and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjnph-2021-000376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Nutrition, Prevention and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjnph-2021-000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Potential effect of real-world junk food and sugar-sweetened beverage taxes on population health, health system costs and greenhouse gas emissions in New Zealand: a modelling study.
Poor diet is a major risk factor for excess weight gain and obesity-related diseases, including cardiovascular diseases, type 2 diabetes mellitus, osteoarthritis and several cancers. This paper aims to assess the potential impacts of real-world food and beverage taxes on change in dietary risk factors, health gains (in quality-adjusted life years (QALYs)), health system costs and greenhouse gas (GHG) emissions as if they had all been implemented in New Zealand (NZ). Ten taxes or tax packages were modelled. A proportional multistate life table model was used to predict resultant QALYs and costs over the remaining lifespan of the NZ population alive in 2011, as well as GHG emissions. QALYs ranged from 12.5 (95% uncertainty interval (UI) 10.2 to 15.0; 3% discount rate) per 1000 population for the import tax on sugar-sweetened beverages (SSB) in Palau to 143 (95% UI 118 to 171) per 1000 population for the excise duties on saturated fat, chocolate and sweets in Denmark, while health expenditure savings ranged from 2011 NZ$245 (95% UI 188 to 310; 2020 US$185) per capita to NZ$2770 (95% UI 2140 to 3480; US$2100) per capita, respectively. The modelled taxes resulted in decreases in GHG emissions from baseline diets, ranging from -0.2% for the tax on SSB in Barbados to -2.8% for Denmark's tax package. There is strong evidence for the implementation of food and beverage tax packages in NZ or similar high-income settings.