患者特定的一维动脉网络模型中的不确定性量化:基于enkf的流入估计器。

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2017-03-01 Epub Date: 2017-02-22 DOI:10.1115/1.4035918
Andrea Arnold, Christina Battista, Daniel Bia, Yanina Zócalo German, Ricardo L Armentano, Hien Tran, Mette S Olufsen
{"title":"患者特定的一维动脉网络模型中的不确定性量化:基于enkf的流入估计器。","authors":"Andrea Arnold,&nbsp;Christina Battista,&nbsp;Daniel Bia,&nbsp;Yanina Zócalo German,&nbsp;Ricardo L Armentano,&nbsp;Hien Tran,&nbsp;Mette S Olufsen","doi":"10.1115/1.4035918","DOIUrl":null,"url":null,"abstract":"<p><p>Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.</p>","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":"2 1","pages":"0110021-1100214"},"PeriodicalIF":0.5000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4035918","citationCount":"14","resultStr":"{\"title\":\"Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator.\",\"authors\":\"Andrea Arnold,&nbsp;Christina Battista,&nbsp;Daniel Bia,&nbsp;Yanina Zócalo German,&nbsp;Ricardo L Armentano,&nbsp;Hien Tran,&nbsp;Mette S Olufsen\",\"doi\":\"10.1115/1.4035918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.</p>\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\"2 1\",\"pages\":\"0110021-1100214\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4035918\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4035918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4035918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14

摘要

心血管动力学的患者特异性模型的成功临床应用取决于在存在输入不确定性的情况下模型输出的可靠性。对于动脉网络的1D流体动力学模型,与模型输出相关的输入不确定性与血管和网络几何形状的规范、流体和壁方程内的参数以及用于指定入口和出口边界条件的参数有关。本研究调查了应用于1D模型入口边界的流动剖面的不确定性如何影响单个容器中心的面积和压力预测。更具体地说,本研究开发了一种基于集成卡尔曼滤波器(EnKF)的迭代方案,以根据曲线的先验分布来估计时间流入剖面。基于EnKF的流入估计器提供了对估计流入的大小和形状的不确定性的测量,该不确定性通过模型传播,以确定面积和压力的模型预测中的相应不确定性。将模型预测与健康雄性美利奴羊升主动脉、颈动脉和股动脉的离体面积和血压测量值进行比较。结果讨论了使用线性和非线性粘弹性墙模型获得的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator.

Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
Automatic Ground-Truth Image Labeling for Deep Neural Network Training and Evaluation Using Industrial Robotics and Motion Capture Using Responsive Feedback in Scaling a Gender Norms-Shifting Adolescent Sexual and Reproductive Health Intervention in the Democratic Republic of Congo. A Solution Verification Study For Urans Simulations of Flow Over a 5:1 Rectangular Cylinder Using Grid Convergence Index And Least Squares Procedures Strategies for Computational Fluid Dynamics Validation Experiments On the Verification of Finite Element Determinations of Stress Concentration Factors for Handbooks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1