{"title":"比较富含辣椒素和辣椒碱的辣椒果实对肥胖诱导的 C57BL/6J 小鼠模型的抗肥胖作用","authors":"Velmurugan Shanmugham, Ravi Subban","doi":"10.17113/ftb.60.02.22.7376","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Obesity increases mortality and morbidity due to its impact on type 2 diabetes, cardiovascular and gastrointestinal diseases, arthritis and certain cancers. The epidemic of excessive mass and obesity require constant research to improve therapies without undesirable side effects. Therefore, exploring the anti-obesity phytochemicals from food sources is essential. Most pharmacological studies of the anti-obesity potential of <i>Capsicum annuum</i> have been directed towards capsaicin and very few towards capsanthin. However, these studies utilized uncoated capsaicin and capsanthin. This study aims to compare the anti-obesity effects of enteric-coated capsaicin and capsanthin in a high-fat diet-induced obesity in animal model.</p><p><strong>Experimental approach: </strong>In this study, we investigated the anti-obesity properties of capsanthin-enriched pellets and capsaicin pellets derived from red chili fruit (<i>Capsicum annuum</i>) on high-fat diet (HFD)-induced obesity in C57BL/6J mice. First, the animals received HFD to induce their obesity. Animals were supplemented orally with pellets. The food intake, body mass, obesity and clinical biomarkers were assessed.</p><p><strong>Results and conclusions: </strong>The mice fed with HFD gained body mass and white adipose tissue mass compared to the mice that consumed a normal diet. The oral administration of capsanthin-enriched pellets and capsaicin pellets significantly reduced the body mass gain. These pellets have a statistically significant (p<0.05) impact on obesity biomarkers by increasing adiponectin and decreasing leptin, free fatty acid and insulin concentrations relative to HFD control. There was no change in the liver mass in all groups, but there was a significant decrease in white adipose tissue amounts. Inguinal adipose tissue amount was reduced by 37.0% and that of epididymal adipose tissue by 43.64% after treatment with capsanthin-enriched pellets. These results suggest that capsanthin-enriched pellets and capsaicin pellets may be useful in combating metabolic diseases, including obesity, without adverse effects.</p><p><strong>Novelty and scientific contribution: </strong>We increased the content of capsanthin for more than 50% in capsanthin-enriched extract and extended the room temperature stability for more than one year by converting the crystals into capsanthin-enriched pellets. This study breaks new ground by examining the potential of capsanthin >50% in the management of obesity for the first time.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"60 2","pages":"202-212"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from <i>Capsicum annuum</i> L. Fruit in Obesity-Induced C57BL/6J Mouse Model.\",\"authors\":\"Velmurugan Shanmugham, Ravi Subban\",\"doi\":\"10.17113/ftb.60.02.22.7376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Research background: </strong>Obesity increases mortality and morbidity due to its impact on type 2 diabetes, cardiovascular and gastrointestinal diseases, arthritis and certain cancers. The epidemic of excessive mass and obesity require constant research to improve therapies without undesirable side effects. Therefore, exploring the anti-obesity phytochemicals from food sources is essential. Most pharmacological studies of the anti-obesity potential of <i>Capsicum annuum</i> have been directed towards capsaicin and very few towards capsanthin. However, these studies utilized uncoated capsaicin and capsanthin. This study aims to compare the anti-obesity effects of enteric-coated capsaicin and capsanthin in a high-fat diet-induced obesity in animal model.</p><p><strong>Experimental approach: </strong>In this study, we investigated the anti-obesity properties of capsanthin-enriched pellets and capsaicin pellets derived from red chili fruit (<i>Capsicum annuum</i>) on high-fat diet (HFD)-induced obesity in C57BL/6J mice. First, the animals received HFD to induce their obesity. Animals were supplemented orally with pellets. The food intake, body mass, obesity and clinical biomarkers were assessed.</p><p><strong>Results and conclusions: </strong>The mice fed with HFD gained body mass and white adipose tissue mass compared to the mice that consumed a normal diet. The oral administration of capsanthin-enriched pellets and capsaicin pellets significantly reduced the body mass gain. These pellets have a statistically significant (p<0.05) impact on obesity biomarkers by increasing adiponectin and decreasing leptin, free fatty acid and insulin concentrations relative to HFD control. There was no change in the liver mass in all groups, but there was a significant decrease in white adipose tissue amounts. Inguinal adipose tissue amount was reduced by 37.0% and that of epididymal adipose tissue by 43.64% after treatment with capsanthin-enriched pellets. These results suggest that capsanthin-enriched pellets and capsaicin pellets may be useful in combating metabolic diseases, including obesity, without adverse effects.</p><p><strong>Novelty and scientific contribution: </strong>We increased the content of capsanthin for more than 50% in capsanthin-enriched extract and extended the room temperature stability for more than one year by converting the crystals into capsanthin-enriched pellets. This study breaks new ground by examining the potential of capsanthin >50% in the management of obesity for the first time.</p>\",\"PeriodicalId\":12400,\"journal\":{\"name\":\"Food Technology and Biotechnology\",\"volume\":\"60 2\",\"pages\":\"202-212\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Technology and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17113/ftb.60.02.22.7376\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.60.02.22.7376","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from Capsicum annuum L. Fruit in Obesity-Induced C57BL/6J Mouse Model.
Research background: Obesity increases mortality and morbidity due to its impact on type 2 diabetes, cardiovascular and gastrointestinal diseases, arthritis and certain cancers. The epidemic of excessive mass and obesity require constant research to improve therapies without undesirable side effects. Therefore, exploring the anti-obesity phytochemicals from food sources is essential. Most pharmacological studies of the anti-obesity potential of Capsicum annuum have been directed towards capsaicin and very few towards capsanthin. However, these studies utilized uncoated capsaicin and capsanthin. This study aims to compare the anti-obesity effects of enteric-coated capsaicin and capsanthin in a high-fat diet-induced obesity in animal model.
Experimental approach: In this study, we investigated the anti-obesity properties of capsanthin-enriched pellets and capsaicin pellets derived from red chili fruit (Capsicum annuum) on high-fat diet (HFD)-induced obesity in C57BL/6J mice. First, the animals received HFD to induce their obesity. Animals were supplemented orally with pellets. The food intake, body mass, obesity and clinical biomarkers were assessed.
Results and conclusions: The mice fed with HFD gained body mass and white adipose tissue mass compared to the mice that consumed a normal diet. The oral administration of capsanthin-enriched pellets and capsaicin pellets significantly reduced the body mass gain. These pellets have a statistically significant (p<0.05) impact on obesity biomarkers by increasing adiponectin and decreasing leptin, free fatty acid and insulin concentrations relative to HFD control. There was no change in the liver mass in all groups, but there was a significant decrease in white adipose tissue amounts. Inguinal adipose tissue amount was reduced by 37.0% and that of epididymal adipose tissue by 43.64% after treatment with capsanthin-enriched pellets. These results suggest that capsanthin-enriched pellets and capsaicin pellets may be useful in combating metabolic diseases, including obesity, without adverse effects.
Novelty and scientific contribution: We increased the content of capsanthin for more than 50% in capsanthin-enriched extract and extended the room temperature stability for more than one year by converting the crystals into capsanthin-enriched pellets. This study breaks new ground by examining the potential of capsanthin >50% in the management of obesity for the first time.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.