{"title":"杂合子优势自交群体的自适应减数分裂驱动","authors":"Evgeny Brud","doi":"10.1016/j.tpb.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The egalitarian allotment of gametes to each allele at a locus (Mendel’s law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel’s law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"146 ","pages":"Pages 61-70"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive meiotic drive in selfing populations with heterozygote advantage\",\"authors\":\"Evgeny Brud\",\"doi\":\"10.1016/j.tpb.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The egalitarian allotment of gametes to each allele at a locus (Mendel’s law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel’s law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"146 \",\"pages\":\"Pages 61-70\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580922000405\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000405","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Adaptive meiotic drive in selfing populations with heterozygote advantage
The egalitarian allotment of gametes to each allele at a locus (Mendel’s law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel’s law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.