{"title":"设计针对细菌病原体的窄谱抗生素的路线图。","authors":"Xinyun Cao, Robert Landick, Elizabeth A Campbell","doi":"10.15698/mic2022.07.780","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clostridioides difficile</i> (<i>Cdiff</i>) infection (CDI) continues to be the leading threat of nosocomial deaths worldwide and a major burden on health-care systems. Broad-spectrum antibiotics eradicate the normal gut microbiome, killing protective commensal bacteria and increasing CDI recurrence. In contrast, Fidaxomicin (Fdx) is a narrow-spectrum antibiotic that inhibits <i>Cdiff</i> growth without affecting crucial gut microbes. However, the basis of the narrow-spectrum activity of Fdx on its target, RNA polymerase (RNAP), in <i>Cdiff</i> has been enigmatic. Recently, Cao <i>et al.</i> (Nature, doi: 10.1038/s41586-022-04545-z) combined transgenic RNAP design and synthesis with cryo-electron microscopy (cryo-EM) to identify a key determinant of Fdx inhibition of <i>Cdiff</i> RNAP. This finding was further corroborated by biochemical, bioinformatics, and genetic analysis. This microreview describes implications of this work for lineage-specific antibiotic design and new directions toward understanding transcription and regulation in <i>Cdiff</i> and other bacterial pathogens.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251626/pdf/","citationCount":"1","resultStr":"{\"title\":\"A roadmap for designing narrow-spectrum antibiotics targeting bacterial pathogens.\",\"authors\":\"Xinyun Cao, Robert Landick, Elizabeth A Campbell\",\"doi\":\"10.15698/mic2022.07.780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Clostridioides difficile</i> (<i>Cdiff</i>) infection (CDI) continues to be the leading threat of nosocomial deaths worldwide and a major burden on health-care systems. Broad-spectrum antibiotics eradicate the normal gut microbiome, killing protective commensal bacteria and increasing CDI recurrence. In contrast, Fidaxomicin (Fdx) is a narrow-spectrum antibiotic that inhibits <i>Cdiff</i> growth without affecting crucial gut microbes. However, the basis of the narrow-spectrum activity of Fdx on its target, RNA polymerase (RNAP), in <i>Cdiff</i> has been enigmatic. Recently, Cao <i>et al.</i> (Nature, doi: 10.1038/s41586-022-04545-z) combined transgenic RNAP design and synthesis with cryo-electron microscopy (cryo-EM) to identify a key determinant of Fdx inhibition of <i>Cdiff</i> RNAP. This finding was further corroborated by biochemical, bioinformatics, and genetic analysis. This microreview describes implications of this work for lineage-specific antibiotic design and new directions toward understanding transcription and regulation in <i>Cdiff</i> and other bacterial pathogens.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251626/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2022.07.780\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2022.07.780","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A roadmap for designing narrow-spectrum antibiotics targeting bacterial pathogens.
Clostridioides difficile (Cdiff) infection (CDI) continues to be the leading threat of nosocomial deaths worldwide and a major burden on health-care systems. Broad-spectrum antibiotics eradicate the normal gut microbiome, killing protective commensal bacteria and increasing CDI recurrence. In contrast, Fidaxomicin (Fdx) is a narrow-spectrum antibiotic that inhibits Cdiff growth without affecting crucial gut microbes. However, the basis of the narrow-spectrum activity of Fdx on its target, RNA polymerase (RNAP), in Cdiff has been enigmatic. Recently, Cao et al. (Nature, doi: 10.1038/s41586-022-04545-z) combined transgenic RNAP design and synthesis with cryo-electron microscopy (cryo-EM) to identify a key determinant of Fdx inhibition of Cdiff RNAP. This finding was further corroborated by biochemical, bioinformatics, and genetic analysis. This microreview describes implications of this work for lineage-specific antibiotic design and new directions toward understanding transcription and regulation in Cdiff and other bacterial pathogens.