{"title":"具有金属污染物特定适应症的肾毒性生物标志物:对环境健康的影响。","authors":"István Pócsi, Mark E Dockrell, Robert G Price","doi":"10.1177/11772719221111882","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO<sub>2</sub>) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.</p>","PeriodicalId":47060,"journal":{"name":"Biomarker Insights","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/90/10.1177_11772719221111882.PMC9290154.pdf","citationCount":"14","resultStr":"{\"title\":\"Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health.\",\"authors\":\"István Pócsi, Mark E Dockrell, Robert G Price\",\"doi\":\"10.1177/11772719221111882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO<sub>2</sub>) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.</p>\",\"PeriodicalId\":47060,\"journal\":{\"name\":\"Biomarker Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/90/10.1177_11772719221111882.PMC9290154.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarker Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11772719221111882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11772719221111882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health.
Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO2) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.