{"title":"氢分子拉曼微分截面的激光雷达测量","authors":"V. E. Privalov, V. G. Shemanin","doi":"10.3103/S1060992X23010034","DOIUrl":null,"url":null,"abstract":"<p>The dependence of the Raman emission pulse energy by the hydrogen molecules on the ranging distance has been obtained at the laboratory Raman lidar with YAG–Nd laser radiation second harmonic at the 532 nm wavelength. This Raman lidar equation treatment results made it possible to calculate the Raman differential cross section for H<sub>2</sub> molecules equal to (2.70 ± 0.43) × 10<sup>–30</sup> cm<sup>2</sup>/sr in good agreement with other data.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 1","pages":"34 - 38"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lidar Measurement of the Raman Differential Cross Section by Hydrogen Molecules\",\"authors\":\"V. E. Privalov, V. G. Shemanin\",\"doi\":\"10.3103/S1060992X23010034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dependence of the Raman emission pulse energy by the hydrogen molecules on the ranging distance has been obtained at the laboratory Raman lidar with YAG–Nd laser radiation second harmonic at the 532 nm wavelength. This Raman lidar equation treatment results made it possible to calculate the Raman differential cross section for H<sub>2</sub> molecules equal to (2.70 ± 0.43) × 10<sup>–30</sup> cm<sup>2</sup>/sr in good agreement with other data.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"32 1\",\"pages\":\"34 - 38\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X23010034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23010034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Lidar Measurement of the Raman Differential Cross Section by Hydrogen Molecules
The dependence of the Raman emission pulse energy by the hydrogen molecules on the ranging distance has been obtained at the laboratory Raman lidar with YAG–Nd laser radiation second harmonic at the 532 nm wavelength. This Raman lidar equation treatment results made it possible to calculate the Raman differential cross section for H2 molecules equal to (2.70 ± 0.43) × 10–30 cm2/sr in good agreement with other data.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.