CSF1R定义了健康人血液和COVID-19中单个核吞噬细胞系统谱系。

IF 4.1 Q2 IMMUNOLOGY Immunotherapy advances Pub Date : 2021-02-17 eCollection Date: 2021-01-01 DOI:10.1093/immadv/ltab003
Theo W Combes, Federica Orsenigo, Alexander Stewart, A S Jeewaka R Mendis, Deborah Dunn-Walters, Siamon Gordon, Fernando O Martinez
{"title":"CSF1R定义了健康人血液和COVID-19中单个核吞噬细胞系统谱系。","authors":"Theo W Combes,&nbsp;Federica Orsenigo,&nbsp;Alexander Stewart,&nbsp;A S Jeewaka R Mendis,&nbsp;Deborah Dunn-Walters,&nbsp;Siamon Gordon,&nbsp;Fernando O Martinez","doi":"10.1093/immadv/ltab003","DOIUrl":null,"url":null,"abstract":"<p><p>Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked <i>ex vivo</i> to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928847/pdf/","citationCount":"9","resultStr":"{\"title\":\"CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19.\",\"authors\":\"Theo W Combes,&nbsp;Federica Orsenigo,&nbsp;Alexander Stewart,&nbsp;A S Jeewaka R Mendis,&nbsp;Deborah Dunn-Walters,&nbsp;Siamon Gordon,&nbsp;Fernando O Martinez\",\"doi\":\"10.1093/immadv/ltab003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked <i>ex vivo</i> to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.</p>\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928847/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltab003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltab003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

单核吞噬细胞保护组织,呈递抗原,介导恢复和愈合。迄今为止,我们缺乏一种标记来统一人类的单核吞噬细胞或告诉我们它们的起源。在这里,我们通过谱系受体CSF1R,在稳态和COVID-19中重新评估人血液中单核吞噬细胞的个体发生。我们将CSF1R定义为第一个敏感且可复制的泛吞噬细胞谱系标记,用于识别和枚举所有常规单核细胞和髓系树突状细胞。在稳态下,CSF1R足以进行分选和免疫磁隔离。病理上,CSF1R的变化比CD14和CD16更敏感。在COVID-19中,膜CSF1R的显著下降有助于对患者进行分层,这超出了迄今为止发表的细胞分类的能力,这些分类无法捕捉COVID-19特异性事件。重要的是,CSF1R定义的细胞既不是传统的单核细胞,也不是已发表的分析中遗漏的dc。体外CSF1R的降低可能与高CSF1水平有关。对CSF1R+细胞的血液评估打开了单个核吞噬细胞系统从骨髓转运到组织的发育窗口,支持分离和表型表征,鉴定新的细胞类型,并筛选出CSF1R抑制作为COVID-19和其他疾病的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19.

Mononuclear phagocytes defend tissues, present antigens, and mediate recovery and healing. To date, we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess mononuclear phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state, CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
A rapid method to assess the in vivo multi-functionality of adoptively transferred engineered TCR T cells. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy. Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells. Tumour-Reactive Plasma Cells in Antitumour Immunity: Current Insights and Future Prospects Establishment of Humanised Xenograft Models as In Vivo Study for Lung Metastasis of Osteosarcoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1