直肠排空的流动模拟:从视频脱脂成像中进行定量评估。

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2022-10-14 eCollection Date: 2022-12-06 DOI:10.1098/rsfs.2022.0033
Faisal Ahmad, Stéphane Tanguy, Alain Dubreuil, Albert Magnin, Jean-Luc Faucheron, Clément de Loubens
{"title":"直肠排空的流动模拟:从视频脱脂成像中进行定量评估。","authors":"Faisal Ahmad, Stéphane Tanguy, Alain Dubreuil, Albert Magnin, Jean-Luc Faucheron, Clément de Loubens","doi":"10.1098/rsfs.2022.0033","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanistic understanding of anorectal (patho)physiology is missing to improve the medical care of patients suffering from defaecation disorders. Our objective is to show that complex fluid dynamics modelling of video defaecography may open new perspectives in the diagnosis of defaecation disorders. Based on standard X-ray video defaecographies, we developed a bi-dimensional patient-specific simulation of the expulsion of soft materials, the faeces, by the rectum. The model quantified velocity, pressure and stress fields during the defaecation of a neostool with soft stool-like rheology for patients showing normal and pathological defaecatory function. In normal defaecation, the proximal-distal pressure gradient resulted from both the anorectal junction which formed a converging channel and the anal canal. The flow of the neostool through these anatomical parts was dominated by its shear-thinning viscous properties, rather than its yield stress. Consequently, the evacuation flow rate was significantly affected by variations in pressure applied by the rectum, and much less by the geometry of the anorectal junction. Lastly, we simulated impaired defaecations in the absence of obvious obstructive phenomena. Comparison with normal defaecation allowed us to discuss critical elements which should lead to effective medical management.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560784/pdf/rsfs.2022.0033.pdf","citationCount":"0","resultStr":"{\"title\":\"Flow simulations of rectal evacuation: towards a quantitative evaluation from video defaecography.\",\"authors\":\"Faisal Ahmad, Stéphane Tanguy, Alain Dubreuil, Albert Magnin, Jean-Luc Faucheron, Clément de Loubens\",\"doi\":\"10.1098/rsfs.2022.0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanistic understanding of anorectal (patho)physiology is missing to improve the medical care of patients suffering from defaecation disorders. Our objective is to show that complex fluid dynamics modelling of video defaecography may open new perspectives in the diagnosis of defaecation disorders. Based on standard X-ray video defaecographies, we developed a bi-dimensional patient-specific simulation of the expulsion of soft materials, the faeces, by the rectum. The model quantified velocity, pressure and stress fields during the defaecation of a neostool with soft stool-like rheology for patients showing normal and pathological defaecatory function. In normal defaecation, the proximal-distal pressure gradient resulted from both the anorectal junction which formed a converging channel and the anal canal. The flow of the neostool through these anatomical parts was dominated by its shear-thinning viscous properties, rather than its yield stress. Consequently, the evacuation flow rate was significantly affected by variations in pressure applied by the rectum, and much less by the geometry of the anorectal junction. Lastly, we simulated impaired defaecations in the absence of obvious obstructive phenomena. Comparison with normal defaecation allowed us to discuss critical elements which should lead to effective medical management.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560784/pdf/rsfs.2022.0033.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2022.0033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2022.0033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺乏对肛门直肠(病理)生理学的机械理解,无法改善排便障碍患者的医疗护理。我们的目标是表明视频脱脂成像的复杂流体动力学模型可能为脱脂障碍的诊断开辟新的视角。基于标准的X射线视频脱脂图,我们开发了一个针对患者的二维模拟,模拟直肠排出软物质,即粪便。该模型量化了表现出正常和病理性脱脂功能的患者在用软粪便样流变学脱脂新粪便过程中的速度、压力和应力场。在正常排便中,近端-远端压力梯度是由形成汇聚通道的肛门直肠交界处和肛管引起的。新粪便通过这些解剖部位的流动主要由其剪切变稀的粘性特性决定,而不是由其屈服应力决定。因此,排空流速明显受直肠施加的压力变化的影响,而受肛门直肠交界处几何形状的影响要小得多。最后,我们模拟了在没有明显阻碍现象的情况下受损的脱脂。通过与正常脱脂的比较,我们可以讨论应该导致有效医疗管理的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow simulations of rectal evacuation: towards a quantitative evaluation from video defaecography.

Mechanistic understanding of anorectal (patho)physiology is missing to improve the medical care of patients suffering from defaecation disorders. Our objective is to show that complex fluid dynamics modelling of video defaecography may open new perspectives in the diagnosis of defaecation disorders. Based on standard X-ray video defaecographies, we developed a bi-dimensional patient-specific simulation of the expulsion of soft materials, the faeces, by the rectum. The model quantified velocity, pressure and stress fields during the defaecation of a neostool with soft stool-like rheology for patients showing normal and pathological defaecatory function. In normal defaecation, the proximal-distal pressure gradient resulted from both the anorectal junction which formed a converging channel and the anal canal. The flow of the neostool through these anatomical parts was dominated by its shear-thinning viscous properties, rather than its yield stress. Consequently, the evacuation flow rate was significantly affected by variations in pressure applied by the rectum, and much less by the geometry of the anorectal junction. Lastly, we simulated impaired defaecations in the absence of obvious obstructive phenomena. Comparison with normal defaecation allowed us to discuss critical elements which should lead to effective medical management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative. Creating sustainable capacity for river science in the Congo basin through the CRuHM project. Doctoral training to support sustainable soil geochemistry research in Africa. Materials modelling in the University of Limpopo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1