在不同基质上培养的嗜酸 Talaromyces SPJ22 产生的代谢物的差异。

Q1 Agricultural and Biological Sciences Fungal Biology and Biotechnology Pub Date : 2022-10-28 DOI:10.1186/s40694-022-00145-8
Oluwasola Abayomi Adelusi, Sefater Gbashi, Janet Adeyinka Adebiyi, Rhulani Makhuvele, Oluwafemi Ayodeji Adebo, Adeola Oluwakemi Aasa, Sarem Targuma, Glory Kah, Patrick Berka Njobeh
{"title":"在不同基质上培养的嗜酸 Talaromyces SPJ22 产生的代谢物的差异。","authors":"Oluwasola Abayomi Adelusi, Sefater Gbashi, Janet Adeyinka Adebiyi, Rhulani Makhuvele, Oluwafemi Ayodeji Adebo, Adeola Oluwakemi Aasa, Sarem Targuma, Glory Kah, Patrick Berka Njobeh","doi":"10.1186/s40694-022-00145-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS.</p><p><strong>Results: </strong>The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA.</p><p><strong>Conclusion: </strong>Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variability in metabolites produced by Talaromyces pinophilus SPJ22 cultured on different substrates.\",\"authors\":\"Oluwasola Abayomi Adelusi, Sefater Gbashi, Janet Adeyinka Adebiyi, Rhulani Makhuvele, Oluwafemi Ayodeji Adebo, Adeola Oluwakemi Aasa, Sarem Targuma, Glory Kah, Patrick Berka Njobeh\",\"doi\":\"10.1186/s40694-022-00145-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS.</p><p><strong>Results: </strong>The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA.</p><p><strong>Conclusion: </strong>Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.</p>\",\"PeriodicalId\":52292,\"journal\":{\"name\":\"Fungal Biology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40694-022-00145-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-022-00145-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

背景:真菌释放的多种代谢物是具有生物活性的天然物质的重要来源。气相色谱-高分辨飞行时间质谱(GC-HRTOF-MS)是用于分析微生物(包括嗜脂塔拉菌)产生的代谢物的技术之一。然而,关于不同底物对该真菌菌株代谢物分析的影响的信息却很有限。本研究利用 GC-HRTOF-MS 分析了在三种不同培养基上培养的嗜酸灰太郎酵母菌株 SPJ22 的代谢物谱,这三种培养基包括固体沙佩克酵母提取物琼脂(CYA)、麦芽提取物琼脂(MEA)和马铃薯葡萄糖琼脂(PDA)。将菌丝体(包括培养基)塞入 5 种极性不同的有机溶剂(即乙腈、二氯甲烷、正己烷、80% 甲醇和水)中溶解,然后用 GC-HRTOF-MS 分析提取物:研究发现了不同类别的代谢物,如脂肪酸(2.13%)、酰胺(4.26%)、烷烃(34.04%)、呋喃(2.13%)、酮(4.26%)、醇(14.89%)、芳香族化合物(6.38%)和其他杂项化合物(17.02%)。本研究中报告的重要代谢物,如乙酸、9-十八烯酰胺、十一烷酸甲酯、肼、十六烷、壬烷、二十烷和其他化合物,已被广泛证实具有促进植物生长、抗菌、消炎、抗氧化和生物燃料等特性。此外,在 PDA 和 MEA 上生长的嗜酸乳杆菌产生的化合物数量是在 CYA 上生长的嗜酸乳杆菌的两倍多:因此,我们的研究结果表明,嗜脂蘑菇产生的必需代谢物与底物有关,其中许多代谢物具有已知的有益特性,因此,这种生物可被用作这些有用有机分子的可持续天然来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variability in metabolites produced by Talaromyces pinophilus SPJ22 cultured on different substrates.

Background: Several metabolites released by fungal species are an essential source of biologically active natural substances. Gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) is one of the techniques used in profiling the metabolites produced by microorganisms, including Talaromyces pinophilus. However, there is limited information regarding differential substrates' impacts on this fungal strain's metabolite profiling. This study examined the metabolite profile of T. pinophilus strain SPJ22 cultured on three different media, including solid czapek yeast extract agar (CYA), malt extract agar (MEA) and potato dextrose agar (PDA) using GC-HRTOF-MS. The mycelia including the media were plugged and dissolved in 5 different organic solvents with varying polarities viz.: acetonitrile, dichloromethane, hexane, 80% methanol and water, and extracts analysed on GC-HRTOF-MS.

Results: The study revealed the presence of different classes of metabolites, such as fatty acids (2.13%), amides (4.26%), alkanes (34.04%), furan (2.13%), ketones (4.26%), alcohols (14.89%), aromatic compounds (6.38%), and other miscellaneous compounds (17.02%). Significant metabolites such as acetic acid, 9-octadecenamide, undecanoic acid methyl ester, hydrazine, hexadecane, nonadecane, eicosane, and other compounds reported in this study have been widely documented to have plant growth promoting, antimicrobial, anti-inflammatory, antioxidant, and biofuel properties. Furthermore, T. pinophilus grown on PDA and MEA produced more than twice as many compounds as that grown on CYA.

Conclusion: Thus, our result showed that the production of essential metabolites from T. pinophilus is substrate dependent, with many of these metabolites known to have beneficial characteristics, and as such, this organism can be utilised as a sustainable and natural source for these useful organic molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Biology and Biotechnology
Fungal Biology and Biotechnology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
10.20
自引率
0.00%
发文量
17
审稿时长
9 weeks
期刊最新文献
The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox. Border crossings and connections. Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1