百日咳杆菌外膜囊泡作为毒力因子载体影响细菌与巨噬细胞的相互作用。

IF 2.7 4区 医学 Q3 IMMUNOLOGY Pathogens and disease Pub Date : 2022-08-24 DOI:10.1093/femspd/ftac031
Bruno Blancá, Jimena Alvarez Hayes, Kristin Surmann, Valdez Hugo, Christian Hentschker, Yanina Lamberti, Uwe Völker, María Eugenia Rodriguez
{"title":"百日咳杆菌外膜囊泡作为毒力因子载体影响细菌与巨噬细胞的相互作用。","authors":"Bruno Blancá,&nbsp;Jimena Alvarez Hayes,&nbsp;Kristin Surmann,&nbsp;Valdez Hugo,&nbsp;Christian Hentschker,&nbsp;Yanina Lamberti,&nbsp;Uwe Völker,&nbsp;María Eugenia Rodriguez","doi":"10.1093/femspd/ftac031","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages.\",\"authors\":\"Bruno Blancá,&nbsp;Jimena Alvarez Hayes,&nbsp;Kristin Surmann,&nbsp;Valdez Hugo,&nbsp;Christian Hentschker,&nbsp;Yanina Lamberti,&nbsp;Uwe Völker,&nbsp;María Eugenia Rodriguez\",\"doi\":\"10.1093/femspd/ftac031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.</p>\",\"PeriodicalId\":19795,\"journal\":{\"name\":\"Pathogens and disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/femspd/ftac031\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftac031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

革兰氏阴性致病菌组成性地脱落外膜囊泡(omv),在宿主-病原体相互作用中起重要作用,最终决定感染的结果。我们之前发现百日咳的病原百日咳博德泰拉在与这些免疫细胞内存活的人类巨噬细胞的先天相互作用中存活下来。腺苷酸环化酶(CyaA)是该病原体的主要毒素之一,被发现参与巨噬细胞防御反应的调节,最终促进细胞内细菌的生存。我们在此研究装载了大多数细菌毒素和CyaA的百日咳B. omv是否调节巨噬细胞对细菌感染的反应。我们观察到巨噬细胞与omv的预孵育导致巨噬细胞对遇到细菌的防御反应降低,以CyaA依赖的方式。我们的研究结果表明,由百日咳B. omv递送的CyaA通过降低宿主细胞的吞噬和杀菌能力来抑制巨噬细胞的保护功能。通过增加细菌在与巨噬细胞先天相遇时存活的机会,百日咳B. omv可能在感染过程中发挥相关作用,促进细菌在宿主内的持久性,并最终塑造整个感染过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages.

Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
期刊最新文献
Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. CRISPR/Cas9-Edited Duck Enteritis Virus expressing Pmp17G of Chlamydia psittaci Induced Protective Immunity in Ducking. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or D-mannose. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in acute phase of COVID-19, convalescents and pre-pandemic individuals. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1