工程光疗法用于胶质母细胞瘤的多模式治疗。

Hyung Shik Kim, Dong Yun Lee
{"title":"工程光疗法用于胶质母细胞瘤的多模式治疗。","authors":"Hyung Shik Kim,&nbsp;Dong Yun Lee","doi":"10.14791/btrt.2022.0032","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by fatal prognosis and high rates of recurrence. Although there are various treatment strategies such as surgical resection, radiotherapy, and chemotherapy, these traditional approaches still have not improved the survival rates and prolongation. Therefore, there is a pressing requirement for developing novel technologies to combat GBM. Nanoparticle-based GBM therapy can be considered a promising approach to precisely treat tumors with minimal side effects. Among various nanoparticles, gold nanoparticle (AuNP) has been demonstrated to be effective in treating GBM because of its advantages such as easy functionalization due to self-assembled monolayers of thiols, surface plasmon resonance effect on its surface, and relatively low toxicity issues. By using nanoscale (5-100 nm) and facile functionalization with a targeting ligand, AuNP can overcome the obstacles caused by blood-brain barrier, which selectively inhibits AuNP penetration into the brain tumor mass. AuNPs delivered into brain tissue and targeted with GBM have been mostly explored for photothermal therapy and photodynamic therapy, but also investigated in the development of complex therapies including radiotherapy, chemotherapy, and immunotherapy using AuNP-based nanoplatforms. Therefore, the aim of this mini review is to summarize recent works on the AuNPs-based nanoplatforms for treating GBM with a multimodal approach.</p>","PeriodicalId":72453,"journal":{"name":"Brain tumor research and treatment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/fc/btrt-10-215.PMC9650121.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineered Aurotherapy for the Multimodal Treatment of Glioblastoma.\",\"authors\":\"Hyung Shik Kim,&nbsp;Dong Yun Lee\",\"doi\":\"10.14791/btrt.2022.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by fatal prognosis and high rates of recurrence. Although there are various treatment strategies such as surgical resection, radiotherapy, and chemotherapy, these traditional approaches still have not improved the survival rates and prolongation. Therefore, there is a pressing requirement for developing novel technologies to combat GBM. Nanoparticle-based GBM therapy can be considered a promising approach to precisely treat tumors with minimal side effects. Among various nanoparticles, gold nanoparticle (AuNP) has been demonstrated to be effective in treating GBM because of its advantages such as easy functionalization due to self-assembled monolayers of thiols, surface plasmon resonance effect on its surface, and relatively low toxicity issues. By using nanoscale (5-100 nm) and facile functionalization with a targeting ligand, AuNP can overcome the obstacles caused by blood-brain barrier, which selectively inhibits AuNP penetration into the brain tumor mass. AuNPs delivered into brain tissue and targeted with GBM have been mostly explored for photothermal therapy and photodynamic therapy, but also investigated in the development of complex therapies including radiotherapy, chemotherapy, and immunotherapy using AuNP-based nanoplatforms. Therefore, the aim of this mini review is to summarize recent works on the AuNPs-based nanoplatforms for treating GBM with a multimodal approach.</p>\",\"PeriodicalId\":72453,\"journal\":{\"name\":\"Brain tumor research and treatment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/fc/btrt-10-215.PMC9650121.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain tumor research and treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14791/btrt.2022.0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain tumor research and treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14791/btrt.2022.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤(GBM)是最具侵袭性的脑肿瘤,具有致命的预后和高复发率。虽然有各种治疗策略,如手术切除、放疗、化疗,但这些传统的方法仍然没有提高生存率和延长时间。因此,迫切需要开发新的技术来对抗GBM。基于纳米颗粒的GBM治疗被认为是一种很有前途的方法,可以精确治疗肿瘤,副作用最小。在各种纳米颗粒中,金纳米颗粒(AuNP)由于其自组装单层硫醇层易于功能化、表面等离子体共振效应以及相对较低的毒性等优点,已被证明是治疗GBM的有效药物。通过纳米尺度(5-100 nm)和靶向配体的容易功能化,AuNP可以克服血脑屏障造成的障碍,选择性地抑制AuNP渗透到脑肿瘤肿块中。将aunp传递到脑组织并靶向GBM的研究主要用于光热治疗和光动力治疗,但也用于开发基于aunp的纳米平台的复杂治疗,包括放疗、化疗和免疫治疗。因此,这篇综述的目的是总结最近基于aunps的纳米平台以多模式方法治疗GBM的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered Aurotherapy for the Multimodal Treatment of Glioblastoma.

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by fatal prognosis and high rates of recurrence. Although there are various treatment strategies such as surgical resection, radiotherapy, and chemotherapy, these traditional approaches still have not improved the survival rates and prolongation. Therefore, there is a pressing requirement for developing novel technologies to combat GBM. Nanoparticle-based GBM therapy can be considered a promising approach to precisely treat tumors with minimal side effects. Among various nanoparticles, gold nanoparticle (AuNP) has been demonstrated to be effective in treating GBM because of its advantages such as easy functionalization due to self-assembled monolayers of thiols, surface plasmon resonance effect on its surface, and relatively low toxicity issues. By using nanoscale (5-100 nm) and facile functionalization with a targeting ligand, AuNP can overcome the obstacles caused by blood-brain barrier, which selectively inhibits AuNP penetration into the brain tumor mass. AuNPs delivered into brain tissue and targeted with GBM have been mostly explored for photothermal therapy and photodynamic therapy, but also investigated in the development of complex therapies including radiotherapy, chemotherapy, and immunotherapy using AuNP-based nanoplatforms. Therefore, the aim of this mini review is to summarize recent works on the AuNPs-based nanoplatforms for treating GBM with a multimodal approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Rare Case of Intracranial Growing Teratoma Syndrome in a Young Adult. Cerebrospinal Fluid Seeding Versus Inflammation in Setting of Ventriculoperitoneal Shunt as a Potential Cause for Distant Recurrence of Glioblastoma. Early High-Grade Transformation of IDH-Mutant Central Nervous System WHO Grade 2 Astrocytoma: A Case Report. Malignant Transformation of Meningioma With TERT Promoter Mutation: A Case Report. Supraorbital Approaches for Anterior Skull Base and Parasellar Lesions: Insights From a Single-Center Experience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1