田径障碍起跑时,机械力量从躯干和下肢关节力量流向外部水平力量。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-01 Epub Date: 2022-08-22 DOI:10.1080/17461391.2022.2109067
Natsuki Sado, Shinsuke Yoshioka, Senshi Fukashiro
{"title":"田径障碍起跑时,机械力量从躯干和下肢关节力量流向外部水平力量。","authors":"Natsuki Sado,&nbsp;Shinsuke Yoshioka,&nbsp;Senshi Fukashiro","doi":"10.1080/17461391.2022.2109067","DOIUrl":null,"url":null,"abstract":"<p><p>Sprint start performance is measured as the horizontal external power, the time-average rate of horizontal kinetic energy generation. Although joint powers have been examined, not all segment rotations on which positive powers are exerted necessarily contribute to forward propulsion; details regarding horizontal power remain unclear. Here we show the contributions of segment rotations to the forward and upward propulsion. We calculated the joint power exerted on each segment and the contributions from segment rotations to the normalised average horizontal and vertical external powers (<math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> and <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>) during the sprint start by 12 male sprinters. Over half <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (55 ± 6%) is due to the front thigh rotation (0.30 ± 0.04), on which the hip and knee exert positive power. Pelvic rotation does not contribute to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (0.00 ± 0.01). This highlights the importance of the hip-extensors strength and the need for it accompanied by the lumbar-extensors strength cancelling out the hip-extensors action on the pelvis and promoting hip-extensor-induced thigh rotation. The front thigh rotation decreases <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math> (-0.08 ± 0.02). <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math> is primarily induced by rotations of the thorax (0.04 ± 0.01), lumbar region (0.06 ± 0.02), and pelvis (0.04 ± 0.01). Rotations of the lower-limb segments did not contribute to upward propulsion. Therefore, the front thigh induces downward movement, which is counterbalanced by the trunk segments. We bridge the gap in the current understanding from joint power to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math>. We present a case involving segments on which positive joint powers are exerted similarly but play different roles: forward or upward propulsion, thereby providing insights into directional control mechanisms in explosive initiation of motion. HIGHLIGHTSWe examined the contributions of segment rotations to the normalised average horizontal and vertical external powers (<math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math>, <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>): the sprint start performance and the parameter to assess upward propulsion.Over half the total <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (55 ± 6%) is due to the front thigh rotation, while the front thigh rotation decreases <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>, which was counterbalanced by rotations of the thorax, lumbar region, and pelvis.We bridge the gap in the current understanding from joint power to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> and further present a case involving segments on which positive joint powers are exerted but play different roles: forward or upward propulsion.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical power flow from trunk and lower limb joint power to external horizontal power in the track and field block start.\",\"authors\":\"Natsuki Sado,&nbsp;Shinsuke Yoshioka,&nbsp;Senshi Fukashiro\",\"doi\":\"10.1080/17461391.2022.2109067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sprint start performance is measured as the horizontal external power, the time-average rate of horizontal kinetic energy generation. Although joint powers have been examined, not all segment rotations on which positive powers are exerted necessarily contribute to forward propulsion; details regarding horizontal power remain unclear. Here we show the contributions of segment rotations to the forward and upward propulsion. We calculated the joint power exerted on each segment and the contributions from segment rotations to the normalised average horizontal and vertical external powers (<math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> and <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>) during the sprint start by 12 male sprinters. Over half <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (55 ± 6%) is due to the front thigh rotation (0.30 ± 0.04), on which the hip and knee exert positive power. Pelvic rotation does not contribute to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (0.00 ± 0.01). This highlights the importance of the hip-extensors strength and the need for it accompanied by the lumbar-extensors strength cancelling out the hip-extensors action on the pelvis and promoting hip-extensor-induced thigh rotation. The front thigh rotation decreases <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math> (-0.08 ± 0.02). <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math> is primarily induced by rotations of the thorax (0.04 ± 0.01), lumbar region (0.06 ± 0.02), and pelvis (0.04 ± 0.01). Rotations of the lower-limb segments did not contribute to upward propulsion. Therefore, the front thigh induces downward movement, which is counterbalanced by the trunk segments. We bridge the gap in the current understanding from joint power to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math>. We present a case involving segments on which positive joint powers are exerted similarly but play different roles: forward or upward propulsion, thereby providing insights into directional control mechanisms in explosive initiation of motion. HIGHLIGHTSWe examined the contributions of segment rotations to the normalised average horizontal and vertical external powers (<math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math>, <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>): the sprint start performance and the parameter to assess upward propulsion.Over half the total <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> (55 ± 6%) is due to the front thigh rotation, while the front thigh rotation decreases <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>vert</mi></mrow></mrow></msub><mo>¯</mo></mover></math>, which was counterbalanced by rotations of the thorax, lumbar region, and pelvis.We bridge the gap in the current understanding from joint power to <math><mover><msub><mrow><mrow><mover><mi>P</mi><mo>^</mo></mover></mrow></mrow><mrow><mrow><mi>hori</mi></mrow><mi>z</mi></mrow></msub><mo>¯</mo></mover></math> and further present a case involving segments on which positive joint powers are exerted but play different roles: forward or upward propulsion.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17461391.2022.2109067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2022.2109067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

短跑起步性能是以水平外动力、水平动能产生的时间平均速率来衡量的。尽管已经检查了联合动力,但并非所有施加正动力的节段旋转都必然有助于向前推进;关于横向力量的细节尚不清楚。在这里,我们展示了分段旋转对向前和向上推进的贡献。我们计算了在12名男性短跑运动员的短跑起跑过程中,施加在每个节段上的关节力量,以及节段旋转对标准化平均水平和垂直外力(P^horiz和P^vert)的贡献。超过一半的P^horiz(55 ± 6%)是由于大腿前侧旋转(0.30 ± 0.04),髋关节和膝关节在其上施加正能量。骨盆旋转不影响P水平(0.00 ± 0.01)。这突出了髋关节伸肌力量的重要性和对它的需求,同时腰部伸肌力量抵消了髋关节伸展肌对骨盆的作用,并促进了髋关节伸肌引起的大腿旋转。大腿前侧旋转降低P^vert(-0.08 ± 0.02)。P^vert主要由胸部旋转引起(0.04 ± 0.01),腰部(0.06 ± 0.02)和骨盆(0.04 ± 0.01)。下肢节段的旋转对向上推进没有贡献。因此,大腿前部会引起向下的运动,而这种运动会被躯干部分抵消。我们弥合了目前从联合权力到P’horiz’的理解差距。我们提出了一个涉及节段的案例,在节段上施加的正关节力相似,但起着不同的作用:向前或向上推进,从而深入了解运动爆炸起始时的方向控制机制。HIGHLIGHTSWe研究了节段旋转对标准化平均水平和垂直外功率(P^horiz,P^vert)的贡献:短跑起步性能和评估向上推进的参数。超过一半的总P^horiz(55±6%)是由于前大腿旋转引起的,而前大腿旋转降低了P^vert,这被胸部、腰部和骨盆的旋转所抵消。我们弥合了目前从联合力量到P’horiz’的理解差距,并进一步提出了一个案例,涉及施加正联合力量但发挥不同作用的分段:向前或向上推进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical power flow from trunk and lower limb joint power to external horizontal power in the track and field block start.

Sprint start performance is measured as the horizontal external power, the time-average rate of horizontal kinetic energy generation. Although joint powers have been examined, not all segment rotations on which positive powers are exerted necessarily contribute to forward propulsion; details regarding horizontal power remain unclear. Here we show the contributions of segment rotations to the forward and upward propulsion. We calculated the joint power exerted on each segment and the contributions from segment rotations to the normalised average horizontal and vertical external powers (P^horiz¯ and P^vert¯) during the sprint start by 12 male sprinters. Over half P^horiz¯ (55 ± 6%) is due to the front thigh rotation (0.30 ± 0.04), on which the hip and knee exert positive power. Pelvic rotation does not contribute to P^horiz¯ (0.00 ± 0.01). This highlights the importance of the hip-extensors strength and the need for it accompanied by the lumbar-extensors strength cancelling out the hip-extensors action on the pelvis and promoting hip-extensor-induced thigh rotation. The front thigh rotation decreases P^vert¯ (-0.08 ± 0.02). P^vert¯ is primarily induced by rotations of the thorax (0.04 ± 0.01), lumbar region (0.06 ± 0.02), and pelvis (0.04 ± 0.01). Rotations of the lower-limb segments did not contribute to upward propulsion. Therefore, the front thigh induces downward movement, which is counterbalanced by the trunk segments. We bridge the gap in the current understanding from joint power to P^horiz¯. We present a case involving segments on which positive joint powers are exerted similarly but play different roles: forward or upward propulsion, thereby providing insights into directional control mechanisms in explosive initiation of motion. HIGHLIGHTSWe examined the contributions of segment rotations to the normalised average horizontal and vertical external powers (P^horiz¯, P^vert¯): the sprint start performance and the parameter to assess upward propulsion.Over half the total P^horiz¯ (55 ± 6%) is due to the front thigh rotation, while the front thigh rotation decreases P^vert¯, which was counterbalanced by rotations of the thorax, lumbar region, and pelvis.We bridge the gap in the current understanding from joint power to P^horiz¯ and further present a case involving segments on which positive joint powers are exerted but play different roles: forward or upward propulsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1