栉孔扇贝的神经发生:从第一个幼虫的感觉神经元到幼鱼的最终神经系统。

IF 2.6 2区 生物学 Q1 ZOOLOGY Frontiers in Zoology Pub Date : 2022-08-03 DOI:10.1186/s12983-022-00468-7
Marina Kniazkina, Vyacheslav Dyachuk
{"title":"栉孔扇贝的神经发生:从第一个幼虫的感觉神经元到幼鱼的最终神经系统。","authors":"Marina Kniazkina,&nbsp;Vyacheslav Dyachuk","doi":"10.1186/s12983-022-00468-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.</p><p><strong>Results: </strong>We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.</p><p><strong>Conclusions: </strong>We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347173/pdf/","citationCount":"3","resultStr":"{\"title\":\"Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles.\",\"authors\":\"Marina Kniazkina,&nbsp;Vyacheslav Dyachuk\",\"doi\":\"10.1186/s12983-022-00468-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.</p><p><strong>Results: </strong>We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.</p><p><strong>Conclusions: </strong>We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.</p>\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347173/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-022-00468-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00468-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

背景:扇贝是研究得最好的双壳类软体动物之一。然而,对扇贝成体神经系统和神经发生的研究是有限的。本研究采用组织化学和免疫组织化学的方法,研究了法氏斑竹成虫和幼虫神经节中神经递质(5-羟色胺/5-HT、FMRFamide、儿茶酚胺)的定位。结果:我们在所有成年扇贝神经节中都发现了FMRFamide肽,而5- ht样免疫反应(lir)体只在脑胸膜、足部和副神经节中检测到。扇贝幼虫的神经发生始于5-HT-lir神经元的出现,这是早期发育阶段顶端器官(AO)的一部分。在AO附近,出现脑神经节配对胶原(CG)。在幼虫发育后期,CG的5-HT-lir神经突支配着幼虫的膜、腹侧和背侧。扇贝幼仔具有5-HT-lir CG、胸膜神经节和发育中的肠神经系统免疫阳性信号。fmrfamily -lir首先在早期肝脏的背侧、腹侧和AO细胞中检测到。后来,fmrfamilide -lir扩展到内脏神经索、所有神经节以及婴幼儿的肠神经系统。儿茶酚胺能神经元在幼虫口附近、牛皮纸和胃里被检测到。结论:描述了成体扇贝神经节神经递质的分布和法氏扇贝幼体神经发育情况。神经递质免疫染色显示,成年扇贝神经节大体解剖结构与其他双壳类动物相似,但由于神经节结构的复杂性和其他软体动物没有描述的额外神经节的外观而变得复杂。对Bivalvia幼虫神经形态的比较表明,5-HT-lir结构比FMRF-lir结构更保守。值得注意的是,后者在栉孔扇贝幼虫中比在其他双壳类中分布得更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles.

Background: Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.

Results: We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.

Conclusions: We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life. As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem. Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost. The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.
期刊最新文献
Complex interplay between the microfluidic and optical properties of Hoplia sp. beetles Massive citizen science sampling and integrated taxonomic approach unravel Danish cryptogam-dwelling tardigrade fauna Male reproductive system of the deep-sea acorn worm Quatuoralisia malakhovi (Hemichordata, Enteropneusta, Torquaratoridae) from the Bering Sea Are toe fringes important for lizard burying in highly mobile sand? Human activities reshape the spatial overlap between North Chinese leopard and its wild ungulate prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1