{"title":"利用中兴通讯对偏离中心的磁共振成像进行特征描述。","authors":"","doi":"10.1016/j.zemedi.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To maximize acquisition bandwidth in zero echo time (ZTE) sequences, readout gradients are already switched on during the RF pulse, creating unwanted slice selectivity. The resulting image distortions are amplified especially when the anatomy of interest is not located at the isocenter. We aim to characterize off-center ZTE MRI of extremities such as the shoulder, knee, and hip, adjusting the carrier frequency of the RF pulse excitation for each TR.</p></div><div><h3>Methods</h3><p>In ZTE MRI, radial encoding schemes are used, where the distorted slice profile due to the finite RF pulse length rotates with the k-space trajectory. To overcome these modulations for objects far away from the magnet isocenter, the frequency of the RF pulse is shifted for each gradient setting so that artifacts do not occur at a given off-center target position. The sharpness of the edges in the images were calculated and the ZTE acquisition with off-center excitation was compared to an acquisition with isocenter excitation both in phantom and <em>in vivo</em> off-center MRI of the shoulder, knee, and hip at 1.5 and 3T MRI systems.</p></div><div><h3>Results</h3><p>Distortion and blurriness artifacts on the off-center MRI images of the phantom, <em>in vivo</em> shoulder, knee, and hip images were mitigated with off-center excitation without time or noise penalty, at no additional computational cost.</p></div><div><h3>Conclusion</h3><p>The off-center excitation allows ZTE MRI of the shoulder, knee, and hip for high-bandwidth image acquisitions for clinical settings, where positioning at the isocenter is not possible.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 3","pages":"Pages 446-455"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922000940/pdfft?md5=88ef93407ba6cb137dc9ea24421d0b25&pid=1-s2.0-S0939388922000940-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing Off-center MRI with ZTE\",\"authors\":\"\",\"doi\":\"10.1016/j.zemedi.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>To maximize acquisition bandwidth in zero echo time (ZTE) sequences, readout gradients are already switched on during the RF pulse, creating unwanted slice selectivity. The resulting image distortions are amplified especially when the anatomy of interest is not located at the isocenter. We aim to characterize off-center ZTE MRI of extremities such as the shoulder, knee, and hip, adjusting the carrier frequency of the RF pulse excitation for each TR.</p></div><div><h3>Methods</h3><p>In ZTE MRI, radial encoding schemes are used, where the distorted slice profile due to the finite RF pulse length rotates with the k-space trajectory. To overcome these modulations for objects far away from the magnet isocenter, the frequency of the RF pulse is shifted for each gradient setting so that artifacts do not occur at a given off-center target position. The sharpness of the edges in the images were calculated and the ZTE acquisition with off-center excitation was compared to an acquisition with isocenter excitation both in phantom and <em>in vivo</em> off-center MRI of the shoulder, knee, and hip at 1.5 and 3T MRI systems.</p></div><div><h3>Results</h3><p>Distortion and blurriness artifacts on the off-center MRI images of the phantom, <em>in vivo</em> shoulder, knee, and hip images were mitigated with off-center excitation without time or noise penalty, at no additional computational cost.</p></div><div><h3>Conclusion</h3><p>The off-center excitation allows ZTE MRI of the shoulder, knee, and hip for high-bandwidth image acquisitions for clinical settings, where positioning at the isocenter is not possible.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 3\",\"pages\":\"Pages 446-455\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388922000940/pdfft?md5=88ef93407ba6cb137dc9ea24421d0b25&pid=1-s2.0-S0939388922000940-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388922000940\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922000940","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
To maximize acquisition bandwidth in zero echo time (ZTE) sequences, readout gradients are already switched on during the RF pulse, creating unwanted slice selectivity. The resulting image distortions are amplified especially when the anatomy of interest is not located at the isocenter. We aim to characterize off-center ZTE MRI of extremities such as the shoulder, knee, and hip, adjusting the carrier frequency of the RF pulse excitation for each TR.
Methods
In ZTE MRI, radial encoding schemes are used, where the distorted slice profile due to the finite RF pulse length rotates with the k-space trajectory. To overcome these modulations for objects far away from the magnet isocenter, the frequency of the RF pulse is shifted for each gradient setting so that artifacts do not occur at a given off-center target position. The sharpness of the edges in the images were calculated and the ZTE acquisition with off-center excitation was compared to an acquisition with isocenter excitation both in phantom and in vivo off-center MRI of the shoulder, knee, and hip at 1.5 and 3T MRI systems.
Results
Distortion and blurriness artifacts on the off-center MRI images of the phantom, in vivo shoulder, knee, and hip images were mitigated with off-center excitation without time or noise penalty, at no additional computational cost.
Conclusion
The off-center excitation allows ZTE MRI of the shoulder, knee, and hip for high-bandwidth image acquisitions for clinical settings, where positioning at the isocenter is not possible.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.