长期高果糖饮食对小鼠全身代谢谱的影响

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FASEB bioAdvances Pub Date : 2022-05-04 DOI:10.1096/fba.2021-00152
Changmeng Cui, Changshui Wang, Shasha Han, Dingyi Yu, Li Zhu, Pei Jiang
{"title":"长期高果糖饮食对小鼠全身代谢谱的影响","authors":"Changmeng Cui,&nbsp;Changshui Wang,&nbsp;Shasha Han,&nbsp;Dingyi Yu,&nbsp;Li Zhu,&nbsp;Pei Jiang","doi":"10.1096/fba.2021-00152","DOIUrl":null,"url":null,"abstract":"<p>Evidence is mounting that chronic high-fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long-term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high-fructose diet on metabolic profile. Four-week-old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared-discriminant analysis (OPLS-DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long-term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/2e/FBA2-4-560.PMC9353457.pdf","citationCount":"3","resultStr":"{\"title\":\"Impact of a long-term high-fructose diet on systemic metabolic profiles of mice\",\"authors\":\"Changmeng Cui,&nbsp;Changshui Wang,&nbsp;Shasha Han,&nbsp;Dingyi Yu,&nbsp;Li Zhu,&nbsp;Pei Jiang\",\"doi\":\"10.1096/fba.2021-00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evidence is mounting that chronic high-fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long-term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high-fructose diet on metabolic profile. Four-week-old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared-discriminant analysis (OPLS-DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long-term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/2e/FBA2-4-560.PMC9353457.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fba.2021-00152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2021-00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的证据表明,长期高果糖饮食(HFrD)会导致代谢异常,并引发多种疾病。然而,长期高果糖摄入影响全身代谢的潜在机制尚不清楚。因此,本研究试图调查高果糖饮食对代谢谱的影响。4周龄雄性C57BL/6小鼠以15%果糖溶液作为其唯一水源喂养8周。随后,采用气相色谱-质谱联用(GC-MS)研究血清、肌肉、肝脏、心脏、白色脂肪、大脑和肾脏组织的综合代谢谱,并采用主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)等多变量分析筛选HFrD组与对照组之间代谢物的差异表达。此外,MetaboAnalyst 5.0 (http://www.metaboanalyst.ca)和京都基因与基因组百科全书数据库(KEGG;http://www.kegg.jp)被用来描绘一个详细的代谢网络。本研究确定了62种与HFrD相关的代谢物和10种紊乱的代谢途径。结果表明,高果糖摄入主要影响氨基酸代谢和生物合成(甘氨酸、丝氨酸和苏氨酸代谢);天冬氨酸和谷氨酸代谢;血清中的苯丙氨酸、酪氨酸和色氨酸生物合成途径以及精氨酸生物合成途径)、谷胱甘肽代谢、鞘脂代谢、乙醛酸盐和二羧酸盐代谢,而这些途径在大脑中被抑制。肌肉中的淀粉和蔗糖代谢也被破坏。这些结果阐明了长期高果糖摄入对各种组织代谢谱的影响,并为鉴定高果糖破坏的潜在代谢生物标志物和途径提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of a long-term high-fructose diet on systemic metabolic profiles of mice

Evidence is mounting that chronic high-fructose diets (HFrD) can lead to metabolic abnormalities and cause a variety of diseases. However, the underlying mechanism by which long-term high fructose intake influencing systemic metabolism remains unclarified. This study, therefore, attempted to investigate the impact of a high-fructose diet on metabolic profile. Four-week-old male C57BL/6 mice were fed with 15% fructose solution as their only source of water for 8 weeks. Afterward, gas chromatography–mass spectrometry (GC–MS) was employed to investigate the comprehensive metabolic profile of serum, muscle, liver, heart, white adipose, brain, and kidney tissues, and multivariate analyses including principal component analysis (PCA) and orthogonal partial least squared-discriminant analysis (OPLS-DA) were applied to screen for differential metabolite expression between the HFrD and control groups. Furthermore, the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (KEGG; http://www.kegg.jp) were employed to portray a detailed metabolic network. This study identified 62 metabolites related to HFrD and 10 disturbed metabolic pathways. The results indicated that high fructose intake mainly influenced amino acid metabolism and biosynthesis (glycine, serine, and threonine metabolism; aspartate, and glutamate metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and arginine biosynthesis pathways), glutathione metabolism, sphingolipid metabolism, and glyoxylate and dicarboxylate metabolism in serum, whereas these pathways were suppressed in the brain. Starch and sucrose metabolism in muscle was also disrupted. These results elucidate the effects of long-term high fructose consumption on the metabolic profiles of various tissues and provide new insight for the identification of potential metabolic biomarkers and pathways disrupted by high fructose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
期刊最新文献
Issue Information In vivo optical assessment of cerebral and skeletal muscle microvascular response to phenylephrine Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS Activation of nociception-sensitive ionotropic glutamate receptor-expressing rostroventrolateral medulla neurons by stimulation of cardiac afferents in rats Osteocalcin binds to a GPRC6A Venus fly trap allosteric site to positively modulate GPRC6A signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1