Irina A Ekimova, Olga A Vorobyeva, Anna L Mikhlina, Dimitry M Schepetov, Elena V Vortsepneva, Tatiana I Antokhina, Vladimir V Malakhov
{"title":"考虑生态特性和进化的线虫科(腹足目:裸鳃目)内的线虫囊隔离。","authors":"Irina A Ekimova, Olga A Vorobyeva, Anna L Mikhlina, Dimitry M Schepetov, Elena V Vortsepneva, Tatiana I Antokhina, Vladimir V Malakhov","doi":"10.1186/s12983-022-00474-9","DOIUrl":null,"url":null,"abstract":"<p><p>Aeolid nudibranchs are well-known for their ability to incorporate cnidarian nematocysts and use them for defense; this process is tightly linked with the feeding preferences of molluscs. As many nudibranch groups show signs of ecology-based adaptive radiation, studies of prey-based defensive mechanisms can provide valuable insight into details of nudibranch evolutionary history. The main goal of this study is to test the correlation of ecological traits, feeding mechanisms, and prey preferences with cnidosac fine morphology and to pinpoint the phylogenetic value of these traits. We study the cnidosac morphology in thirteen species-representatives of the main lineages within the family Fionidae s.l. The morphological analysis includes histological sections, transmission electron microscopy, confocal laser scanning microscopy, and scanning electron microscopy. For phylogenetic study, available molecular data from public repositories were used, and phylogenetic trees were produced based on Bayesian Inference and Maximum likelihood analysis for a concatenated dataset of three molecular markers (COI, 16S, H3). In general, fionid cnidosacs fit the common aeolid pattern, but among different species we detected a high variation in type of obtained nematocysts, their arrangement within cnidophages, and in number of cell types within cnidosacs. We report on presence of cellules speciale in the haemocoel of all studied species, and for the first time, we report on cells with chitinous spindles in the haemocoel of all fionids except Eubranchus. The function of both these cell types remains unknown. The loss of functional cnidosacs occurred at least three times within Fionidae, and in case of the genera Phestilla, Calma, and Fiona, this loss is linked to their non-cnidarian diet. The diversity of cnidosac fine structure within Fionidae s.l. correlates with that of the radular morphology and feeding preferences of each species. Prey shifts between cnidarian and non-cnidarian prey (both through evolutionary shifts and individual variation) rarely occur within Fionidae s.l.; however, microevolutionary shifts between different hydrozoan species within a single genus are more common. Cnidosac morphology demonstrates considerable resulting changes even when switching between similar hydrozoan species, or changing the feeding site on same prey species. These data indicate that cnidosac morphology likely follows microevolutionary prey shifts-in other words, it is affected by switches in prey species and changes in feeding sites with a single prey species. Thus, the cnidosac morphology may be a useful indicator when studying ecological features of particular species.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670572/pdf/","citationCount":"1","resultStr":"{\"title\":\"Nematocyst sequestration within the family Fionidae (Gastropoda: Nudibranchia) considering ecological properties and evolution.\",\"authors\":\"Irina A Ekimova, Olga A Vorobyeva, Anna L Mikhlina, Dimitry M Schepetov, Elena V Vortsepneva, Tatiana I Antokhina, Vladimir V Malakhov\",\"doi\":\"10.1186/s12983-022-00474-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aeolid nudibranchs are well-known for their ability to incorporate cnidarian nematocysts and use them for defense; this process is tightly linked with the feeding preferences of molluscs. As many nudibranch groups show signs of ecology-based adaptive radiation, studies of prey-based defensive mechanisms can provide valuable insight into details of nudibranch evolutionary history. The main goal of this study is to test the correlation of ecological traits, feeding mechanisms, and prey preferences with cnidosac fine morphology and to pinpoint the phylogenetic value of these traits. We study the cnidosac morphology in thirteen species-representatives of the main lineages within the family Fionidae s.l. The morphological analysis includes histological sections, transmission electron microscopy, confocal laser scanning microscopy, and scanning electron microscopy. For phylogenetic study, available molecular data from public repositories were used, and phylogenetic trees were produced based on Bayesian Inference and Maximum likelihood analysis for a concatenated dataset of three molecular markers (COI, 16S, H3). In general, fionid cnidosacs fit the common aeolid pattern, but among different species we detected a high variation in type of obtained nematocysts, their arrangement within cnidophages, and in number of cell types within cnidosacs. We report on presence of cellules speciale in the haemocoel of all studied species, and for the first time, we report on cells with chitinous spindles in the haemocoel of all fionids except Eubranchus. The function of both these cell types remains unknown. The loss of functional cnidosacs occurred at least three times within Fionidae, and in case of the genera Phestilla, Calma, and Fiona, this loss is linked to their non-cnidarian diet. The diversity of cnidosac fine structure within Fionidae s.l. correlates with that of the radular morphology and feeding preferences of each species. Prey shifts between cnidarian and non-cnidarian prey (both through evolutionary shifts and individual variation) rarely occur within Fionidae s.l.; however, microevolutionary shifts between different hydrozoan species within a single genus are more common. Cnidosac morphology demonstrates considerable resulting changes even when switching between similar hydrozoan species, or changing the feeding site on same prey species. These data indicate that cnidosac morphology likely follows microevolutionary prey shifts-in other words, it is affected by switches in prey species and changes in feeding sites with a single prey species. Thus, the cnidosac morphology may be a useful indicator when studying ecological features of particular species.</p>\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670572/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-022-00474-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00474-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Nematocyst sequestration within the family Fionidae (Gastropoda: Nudibranchia) considering ecological properties and evolution.
Aeolid nudibranchs are well-known for their ability to incorporate cnidarian nematocysts and use them for defense; this process is tightly linked with the feeding preferences of molluscs. As many nudibranch groups show signs of ecology-based adaptive radiation, studies of prey-based defensive mechanisms can provide valuable insight into details of nudibranch evolutionary history. The main goal of this study is to test the correlation of ecological traits, feeding mechanisms, and prey preferences with cnidosac fine morphology and to pinpoint the phylogenetic value of these traits. We study the cnidosac morphology in thirteen species-representatives of the main lineages within the family Fionidae s.l. The morphological analysis includes histological sections, transmission electron microscopy, confocal laser scanning microscopy, and scanning electron microscopy. For phylogenetic study, available molecular data from public repositories were used, and phylogenetic trees were produced based on Bayesian Inference and Maximum likelihood analysis for a concatenated dataset of three molecular markers (COI, 16S, H3). In general, fionid cnidosacs fit the common aeolid pattern, but among different species we detected a high variation in type of obtained nematocysts, their arrangement within cnidophages, and in number of cell types within cnidosacs. We report on presence of cellules speciale in the haemocoel of all studied species, and for the first time, we report on cells with chitinous spindles in the haemocoel of all fionids except Eubranchus. The function of both these cell types remains unknown. The loss of functional cnidosacs occurred at least three times within Fionidae, and in case of the genera Phestilla, Calma, and Fiona, this loss is linked to their non-cnidarian diet. The diversity of cnidosac fine structure within Fionidae s.l. correlates with that of the radular morphology and feeding preferences of each species. Prey shifts between cnidarian and non-cnidarian prey (both through evolutionary shifts and individual variation) rarely occur within Fionidae s.l.; however, microevolutionary shifts between different hydrozoan species within a single genus are more common. Cnidosac morphology demonstrates considerable resulting changes even when switching between similar hydrozoan species, or changing the feeding site on same prey species. These data indicate that cnidosac morphology likely follows microevolutionary prey shifts-in other words, it is affected by switches in prey species and changes in feeding sites with a single prey species. Thus, the cnidosac morphology may be a useful indicator when studying ecological features of particular species.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.