Jia-Wei Wang , Kun Shang , Sheng-Yi Wu , Bo-Yu Zhu , Mei-Gui Han , Yuan Zhao , Yi-Qiu Chen , Jia Xie , Bo Huang , Zhuang Han
{"title":"从马里亚纳海沟沉积物中分离出的耐压性kunmingstutzerimensis 7850S的全基因组序列","authors":"Jia-Wei Wang , Kun Shang , Sheng-Yi Wu , Bo-Yu Zhu , Mei-Gui Han , Yuan Zhao , Yi-Qiu Chen , Jia Xie , Bo Huang , Zhuang Han","doi":"10.1016/j.margen.2022.100996","DOIUrl":null,"url":null,"abstract":"<div><p><em>Stutzerimonas kunmingensis</em> 7850S is a piezotolerant bacterium isolated from the sediment of the Mariana trench. Here, we described the complete genome of strain 7850S, which contains a single circular chromosome of 4,775,870 base pairs with 62.66% G + C content, and harbors 4494 protein-coding genes, 65 transfer RNA genes, and 12 ribosomal RNA genes. The experimental results showed that strain 7850S could grow under hydrostatic pressure of 0.1–70 MPa. Genomic analyses led to identifications of numbers of high hydrostatic pressure-associated genes, such as the ones associated with unsaturated fatty acids, betaine, and ectoine. A complete set of denitrification genes and some heavy metal detoxification genes were also found in this strain. The presence of these genes suggests metabolic characteristics for adaption to hadal environments and provides insights to further understand adaption strategies and ecological roles of <em>Stutzerimonas</em> in hadal environments.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"66 ","pages":"Article 100996"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of piezotolerant Stutzerimonas kunmingensis 7850S isolated from the sediment of the Mariana Trench\",\"authors\":\"Jia-Wei Wang , Kun Shang , Sheng-Yi Wu , Bo-Yu Zhu , Mei-Gui Han , Yuan Zhao , Yi-Qiu Chen , Jia Xie , Bo Huang , Zhuang Han\",\"doi\":\"10.1016/j.margen.2022.100996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Stutzerimonas kunmingensis</em> 7850S is a piezotolerant bacterium isolated from the sediment of the Mariana trench. Here, we described the complete genome of strain 7850S, which contains a single circular chromosome of 4,775,870 base pairs with 62.66% G + C content, and harbors 4494 protein-coding genes, 65 transfer RNA genes, and 12 ribosomal RNA genes. The experimental results showed that strain 7850S could grow under hydrostatic pressure of 0.1–70 MPa. Genomic analyses led to identifications of numbers of high hydrostatic pressure-associated genes, such as the ones associated with unsaturated fatty acids, betaine, and ectoine. A complete set of denitrification genes and some heavy metal detoxification genes were also found in this strain. The presence of these genes suggests metabolic characteristics for adaption to hadal environments and provides insights to further understand adaption strategies and ecological roles of <em>Stutzerimonas</em> in hadal environments.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"66 \",\"pages\":\"Article 100996\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000745\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000745","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Complete genome sequence of piezotolerant Stutzerimonas kunmingensis 7850S isolated from the sediment of the Mariana Trench
Stutzerimonas kunmingensis 7850S is a piezotolerant bacterium isolated from the sediment of the Mariana trench. Here, we described the complete genome of strain 7850S, which contains a single circular chromosome of 4,775,870 base pairs with 62.66% G + C content, and harbors 4494 protein-coding genes, 65 transfer RNA genes, and 12 ribosomal RNA genes. The experimental results showed that strain 7850S could grow under hydrostatic pressure of 0.1–70 MPa. Genomic analyses led to identifications of numbers of high hydrostatic pressure-associated genes, such as the ones associated with unsaturated fatty acids, betaine, and ectoine. A complete set of denitrification genes and some heavy metal detoxification genes were also found in this strain. The presence of these genes suggests metabolic characteristics for adaption to hadal environments and provides insights to further understand adaption strategies and ecological roles of Stutzerimonas in hadal environments.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.