羟基磷灰石镶嵌聚乙烯醇-海藻酸盐半互穿水凝胶载甘草乙醇提取物对口腔病原菌的抗菌作用。

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2022-12-01 Epub Date: 2022-08-15 DOI:10.1007/s40204-022-00199-2
Smitha Chenicheri, Rajesh Ramachandran, Usha Rajamanikam
{"title":"羟基磷灰石镶嵌聚乙烯醇-海藻酸盐半互穿水凝胶载甘草乙醇提取物对口腔病原菌的抗菌作用。","authors":"Smitha Chenicheri,&nbsp;Rajesh Ramachandran,&nbsp;Usha Rajamanikam","doi":"10.1007/s40204-022-00199-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glycyrrhiza glabra (GG) elicits protective effects against periodontal diseases. However, the sustained bioavailability of GG extract at therapeutic concentration warrants ideal delivery vehicles. Present study has focused on the design, fabrication, and evaluations of ethanolic-crude extract of GG-loaded semi-interpenetrating network (semi-IPN) hydrogel (HAAPS-GG) using alginic acid and polyvinyl alcohol (PVA) hydrogel mosaicked with HA for periodontal regeneration. The study has examined the performance of the hydrogel against the selected oral pathogens S. mutans, E. faecalis, L. acidophilus and C. albicans. HAAPS-GG was successfully fabricated and the surface functional groups were confirmed by attenuated total reflectance-infrared (ATR-IR) spectroscopy. HAAPS-GG displayed interconnecting pores, hydrophilicity and excellent water profile contributing to the biocompatibility as evident from direct contact and MTT assay in L929 fibroblasts. The hydrogel was mechanically stable and was immunocompatible owing to the relatively decreased levels of pro-inflammatory mediators COX2, 5LPO, iNOS and MPO in RAW 264.7 macrophages. In addition, the transcript analysis on RAW 264.7 revealed the down-regulation of inflammatory transcription factor NF-κβ and the pro-inflammatory cytokine TNF-α. Importantly, HAAPS-GG arrested the progression of periodontal pathogens predominantly S. mutans, and C. albicans as evident by disc diffusion assay, MTT assay and confocal microscopy. Overall, the HAAPS-GG system offers promising translational avenues in periodontal regeneration.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626709/pdf/40204_2022_Article_199.pdf","citationCount":"2","resultStr":"{\"title\":\"Antimicrobial effects of hydroxyapatite mosaicked polyvinyl alcohol-alginate semi-interpenetrating hydrogel-loaded with ethanolic extract of Glycyrrhiza glabra against oral pathogens.\",\"authors\":\"Smitha Chenicheri,&nbsp;Rajesh Ramachandran,&nbsp;Usha Rajamanikam\",\"doi\":\"10.1007/s40204-022-00199-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycyrrhiza glabra (GG) elicits protective effects against periodontal diseases. However, the sustained bioavailability of GG extract at therapeutic concentration warrants ideal delivery vehicles. Present study has focused on the design, fabrication, and evaluations of ethanolic-crude extract of GG-loaded semi-interpenetrating network (semi-IPN) hydrogel (HAAPS-GG) using alginic acid and polyvinyl alcohol (PVA) hydrogel mosaicked with HA for periodontal regeneration. The study has examined the performance of the hydrogel against the selected oral pathogens S. mutans, E. faecalis, L. acidophilus and C. albicans. HAAPS-GG was successfully fabricated and the surface functional groups were confirmed by attenuated total reflectance-infrared (ATR-IR) spectroscopy. HAAPS-GG displayed interconnecting pores, hydrophilicity and excellent water profile contributing to the biocompatibility as evident from direct contact and MTT assay in L929 fibroblasts. The hydrogel was mechanically stable and was immunocompatible owing to the relatively decreased levels of pro-inflammatory mediators COX2, 5LPO, iNOS and MPO in RAW 264.7 macrophages. In addition, the transcript analysis on RAW 264.7 revealed the down-regulation of inflammatory transcription factor NF-κβ and the pro-inflammatory cytokine TNF-α. Importantly, HAAPS-GG arrested the progression of periodontal pathogens predominantly S. mutans, and C. albicans as evident by disc diffusion assay, MTT assay and confocal microscopy. Overall, the HAAPS-GG system offers promising translational avenues in periodontal regeneration.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626709/pdf/40204_2022_Article_199.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-022-00199-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00199-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

甘草(GG)对牙周病有保护作用。然而,GG提取物在治疗浓度下的持续生物利用度保证了理想的递送载体。本文主要研究了海藻酸和聚乙烯醇(PVA)水凝胶(HAAPS-GG)的设计、制备和评价。该研究检测了水凝胶对选定的口腔病原体变形链球菌、粪肠球菌、嗜酸乳杆菌和白色念珠菌的作用。HAAPS-GG制备成功,并通过衰减全反射-红外光谱(ATR-IR)对其表面官能团进行了确证。HAAPS-GG在L929成纤维细胞中的直接接触和MTT试验表明,HAAPS-GG具有连通孔、亲水性和良好的水谱,有助于生物相容性。由于RAW 264.7巨噬细胞中促炎介质COX2、5LPO、iNOS和MPO的水平相对降低,水凝胶具有机械稳定性和免疫相容性。此外,RAW 264.7的转录分析显示,炎症转录因子NF-κβ和促炎细胞因子TNF-α下调。重要的是,HAAPS-GG阻止了牙周病原体的进展,主要是变形链球菌和白色念珠菌,这在光盘扩散试验、MTT试验和共聚焦显微镜中得到了证实。总的来说,HAAPS-GG系统为牙周再生提供了有希望的转化途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antimicrobial effects of hydroxyapatite mosaicked polyvinyl alcohol-alginate semi-interpenetrating hydrogel-loaded with ethanolic extract of Glycyrrhiza glabra against oral pathogens.

Glycyrrhiza glabra (GG) elicits protective effects against periodontal diseases. However, the sustained bioavailability of GG extract at therapeutic concentration warrants ideal delivery vehicles. Present study has focused on the design, fabrication, and evaluations of ethanolic-crude extract of GG-loaded semi-interpenetrating network (semi-IPN) hydrogel (HAAPS-GG) using alginic acid and polyvinyl alcohol (PVA) hydrogel mosaicked with HA for periodontal regeneration. The study has examined the performance of the hydrogel against the selected oral pathogens S. mutans, E. faecalis, L. acidophilus and C. albicans. HAAPS-GG was successfully fabricated and the surface functional groups were confirmed by attenuated total reflectance-infrared (ATR-IR) spectroscopy. HAAPS-GG displayed interconnecting pores, hydrophilicity and excellent water profile contributing to the biocompatibility as evident from direct contact and MTT assay in L929 fibroblasts. The hydrogel was mechanically stable and was immunocompatible owing to the relatively decreased levels of pro-inflammatory mediators COX2, 5LPO, iNOS and MPO in RAW 264.7 macrophages. In addition, the transcript analysis on RAW 264.7 revealed the down-regulation of inflammatory transcription factor NF-κβ and the pro-inflammatory cytokine TNF-α. Importantly, HAAPS-GG arrested the progression of periodontal pathogens predominantly S. mutans, and C. albicans as evident by disc diffusion assay, MTT assay and confocal microscopy. Overall, the HAAPS-GG system offers promising translational avenues in periodontal regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1