外周结构域与四膜虫I族内含子的新环环相互作用三维模型。

Mayumi Amano
{"title":"外周结构域与四膜虫I族内含子的新环环相互作用三维模型。","authors":"Mayumi Amano","doi":"10.1093/nass/3.1.173","DOIUrl":null,"url":null,"abstract":"<p><p>The long-range interactions between the peripheral domains of Tetrahymena group I intron were studied by NMR. The 20mer RNA contained the 9.1a loop region (AUGCAA) and the 17mer RNA contained the 2.1 loop region (AGAUUGC) were synthesized and studied by NMR. They form both hairpin structures at low NaCl concentration. The 20mer RNA forms dimer by loop-loop interaction, while the 17mer RNA is monomer. On the addition of the 17mer to the 20mer, the new imino proton signals induced by the interaction between the 9.1a and 2.1 loops were not observed. It is found that the 9.1a loop-loop interaction (GCAA-GCAA) with two base pairs prefers to that between the 9.1a and 2.1 loops (GCAA-UUGC) with four base pairs. By my model of intact folding structure containing A-minor tertiary interaction and the compared with sequence, it is presumed that the 9.1a loop does not bind to the 2.1 loop, but to the 5c loop (UGCAA), while the 2.1 loop binds to 3' exon (UAA).</p>","PeriodicalId":86149,"journal":{"name":"Nucleic acids research. Supplement (2001)","volume":" 3","pages":"173-4"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/3.1.173","citationCount":"1","resultStr":"{\"title\":\"The new loop-loop interactions between the peripheral domains and three-dimensional model of Tetrahymena group I intron.\",\"authors\":\"Mayumi Amano\",\"doi\":\"10.1093/nass/3.1.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long-range interactions between the peripheral domains of Tetrahymena group I intron were studied by NMR. The 20mer RNA contained the 9.1a loop region (AUGCAA) and the 17mer RNA contained the 2.1 loop region (AGAUUGC) were synthesized and studied by NMR. They form both hairpin structures at low NaCl concentration. The 20mer RNA forms dimer by loop-loop interaction, while the 17mer RNA is monomer. On the addition of the 17mer to the 20mer, the new imino proton signals induced by the interaction between the 9.1a and 2.1 loops were not observed. It is found that the 9.1a loop-loop interaction (GCAA-GCAA) with two base pairs prefers to that between the 9.1a and 2.1 loops (GCAA-UUGC) with four base pairs. By my model of intact folding structure containing A-minor tertiary interaction and the compared with sequence, it is presumed that the 9.1a loop does not bind to the 2.1 loop, but to the 5c loop (UGCAA), while the 2.1 loop binds to 3' exon (UAA).</p>\",\"PeriodicalId\":86149,\"journal\":{\"name\":\"Nucleic acids research. Supplement (2001)\",\"volume\":\" 3\",\"pages\":\"173-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/nass/3.1.173\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic acids research. Supplement (2001)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nass/3.1.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids research. Supplement (2001)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/3.1.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用核磁共振技术研究了四膜虫I族内含子外周结构域之间的远距离相互作用。合成了含有9.1a环区(AUGCAA)的20mer RNA和含有2.1环区(AGAUUGC)的17mer RNA,并通过NMR对其进行了研究。在低NaCl浓度下形成两种发夹结构。20聚RNA通过环环相互作用形成二聚体,而17聚RNA是单体。当17mer加入到20mer中时,没有观察到9.1a和2.1环之间相互作用诱导的新的亚质子信号。结果表明,具有2个碱基对的9.1a环环相互作用(GCAA-GCAA)优于具有4个碱基对的9.1a环环相互作用(GCAA-UUGC)。通过我的包含a -次三级相互作用的完整折叠结构模型和序列比较,推测9.1a环不与2.1环结合,而是与5c环(UGCAA)结合,而2.1环与3'外显子(UAA)结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The new loop-loop interactions between the peripheral domains and three-dimensional model of Tetrahymena group I intron.

The long-range interactions between the peripheral domains of Tetrahymena group I intron were studied by NMR. The 20mer RNA contained the 9.1a loop region (AUGCAA) and the 17mer RNA contained the 2.1 loop region (AGAUUGC) were synthesized and studied by NMR. They form both hairpin structures at low NaCl concentration. The 20mer RNA forms dimer by loop-loop interaction, while the 17mer RNA is monomer. On the addition of the 17mer to the 20mer, the new imino proton signals induced by the interaction between the 9.1a and 2.1 loops were not observed. It is found that the 9.1a loop-loop interaction (GCAA-GCAA) with two base pairs prefers to that between the 9.1a and 2.1 loops (GCAA-UUGC) with four base pairs. By my model of intact folding structure containing A-minor tertiary interaction and the compared with sequence, it is presumed that the 9.1a loop does not bind to the 2.1 loop, but to the 5c loop (UGCAA), while the 2.1 loop binds to 3' exon (UAA).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analogues of cyclic adenosine 5'-diphosphate ribose and adenophostin A, nucleotides in cellular signal transduction. Molecular recognition in P2 nucleotide receptors. Synthesis of carbocyclic and acyclic nucleosides possessing 2-fluoroadenine derivatives and their inhibitory activities against Plasmodium falciparum SAH hydrolase. Stereoselective synthesis of 2'-beta-carbon-substituted 2'-deoxy-4'-thioribonucleosides from 4-thiofuranoid glycal. Synthetic studies and properties of N-tert-butylaminoxyl nucleosides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1