Abdelghani Iddar, Luis A Campos, Javier Sancho, Aurelio Serrano, Abdelaziz Soukri
{"title":"冬眠和恒温跳鼠骨骼肌甘油醛-3-磷酸脱氢酶的热稳定性差异。","authors":"Abdelghani Iddar, Luis A Campos, Javier Sancho, Aurelio Serrano, Abdelaziz Soukri","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In previous study, we demonstrated that the specific activity of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in skeletal muscle of induced hibernating jerboa (hibernating GAPDH) was 3 4 folds lower than that of the one in the skeletal muscle of the euthermic jerboa (euthermic GAPDH). A significant decrease in both GAPDH protein and GapC mRNA levels occurs when hibernating, but the purified hibernating GAPDH is less active than the euthermic GAPDH. To investigate the physico-chemical basis of this lower activity, the behaviour during thermal inactivation of skeletal muscle GAPDH from hibernating and euthermic tissues was examined by a variety of spectroscopic techniques, including fluorescence emission, circular dichroism and ultraviolet absorption. A clear resistance to thermal denaturation was observed in the hibernating GAPDH compared with the euthermic GAPDH. The different temperature of denaturation found in these proteins by both fluorimetry and circular dichroism indicates that there might exist conformational changes of GAPDH upon hibernation that could affect the stability of this enzyme.</p>","PeriodicalId":21763,"journal":{"name":"Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different thermostability of skeletal muscle glyceraldehyde-3-phosphate dehydrogenase from hibernating and euthermic jerboa (Jaculus orientalis).\",\"authors\":\"Abdelghani Iddar, Luis A Campos, Javier Sancho, Aurelio Serrano, Abdelaziz Soukri\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In previous study, we demonstrated that the specific activity of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in skeletal muscle of induced hibernating jerboa (hibernating GAPDH) was 3 4 folds lower than that of the one in the skeletal muscle of the euthermic jerboa (euthermic GAPDH). A significant decrease in both GAPDH protein and GapC mRNA levels occurs when hibernating, but the purified hibernating GAPDH is less active than the euthermic GAPDH. To investigate the physico-chemical basis of this lower activity, the behaviour during thermal inactivation of skeletal muscle GAPDH from hibernating and euthermic tissues was examined by a variety of spectroscopic techniques, including fluorescence emission, circular dichroism and ultraviolet absorption. A clear resistance to thermal denaturation was observed in the hibernating GAPDH compared with the euthermic GAPDH. The different temperature of denaturation found in these proteins by both fluorimetry and circular dichroism indicates that there might exist conformational changes of GAPDH upon hibernation that could affect the stability of this enzyme.</p>\",\"PeriodicalId\":21763,\"journal\":{\"name\":\"Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Different thermostability of skeletal muscle glyceraldehyde-3-phosphate dehydrogenase from hibernating and euthermic jerboa (Jaculus orientalis).
In previous study, we demonstrated that the specific activity of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in skeletal muscle of induced hibernating jerboa (hibernating GAPDH) was 3 4 folds lower than that of the one in the skeletal muscle of the euthermic jerboa (euthermic GAPDH). A significant decrease in both GAPDH protein and GapC mRNA levels occurs when hibernating, but the purified hibernating GAPDH is less active than the euthermic GAPDH. To investigate the physico-chemical basis of this lower activity, the behaviour during thermal inactivation of skeletal muscle GAPDH from hibernating and euthermic tissues was examined by a variety of spectroscopic techniques, including fluorescence emission, circular dichroism and ultraviolet absorption. A clear resistance to thermal denaturation was observed in the hibernating GAPDH compared with the euthermic GAPDH. The different temperature of denaturation found in these proteins by both fluorimetry and circular dichroism indicates that there might exist conformational changes of GAPDH upon hibernation that could affect the stability of this enzyme.