{"title":"质体中的非光合代谢。","authors":"H. E. Neuhaus, M. J. Emes","doi":"10.1146/annurev.arplant.51.1.111","DOIUrl":null,"url":null,"abstract":"<p><p>Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and the assimilation of nitrogen into amino acids in a wide range of plant tissues. Unlike chloroplasts, all the metabolites for these processes have to be imported, or generated by oxidative metabolism within the organelle. The aim of this review is to summarize our present understanding of the anabolic pathways involved, the requirement for import of precursors from the cytosol, the provision of energy for biosynthesis, and the interaction between pathways that share common intermediates. We emphasize the temporal and developmental regulation of events, and the variation in mechanisms employed by different species that produce the same end products.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":" ","pages":"111-140"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.51.1.111","citationCount":"556","resultStr":"{\"title\":\"NONPHOTOSYNTHETIC METABOLISM IN PLASTIDS.\",\"authors\":\"H. E. Neuhaus, M. J. Emes\",\"doi\":\"10.1146/annurev.arplant.51.1.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and the assimilation of nitrogen into amino acids in a wide range of plant tissues. Unlike chloroplasts, all the metabolites for these processes have to be imported, or generated by oxidative metabolism within the organelle. The aim of this review is to summarize our present understanding of the anabolic pathways involved, the requirement for import of precursors from the cytosol, the provision of energy for biosynthesis, and the interaction between pathways that share common intermediates. We emphasize the temporal and developmental regulation of events, and the variation in mechanisms employed by different species that produce the same end products.</p>\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\" \",\"pages\":\"111-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.arplant.51.1.111\",\"citationCount\":\"556\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.arplant.51.1.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.51.1.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and the assimilation of nitrogen into amino acids in a wide range of plant tissues. Unlike chloroplasts, all the metabolites for these processes have to be imported, or generated by oxidative metabolism within the organelle. The aim of this review is to summarize our present understanding of the anabolic pathways involved, the requirement for import of precursors from the cytosol, the provision of energy for biosynthesis, and the interaction between pathways that share common intermediates. We emphasize the temporal and developmental regulation of events, and the variation in mechanisms employed by different species that produce the same end products.