植物中的反式基因沉默:有多少机制?

M. Fagard, H. Vaucheret
{"title":"植物中的反式基因沉默:有多少机制?","authors":"M. Fagard,&nbsp;H. Vaucheret","doi":"10.1146/annurev.arplant.51.1.167","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic silencing of transgenes and endogenous genes can occur at the transcriptional level (TGS) or at the posttranscriptional level (PTGS). Because they can be induced by transgenes and viruses, TGS and PTGS probably reflect alternative (although not exclusive) responses to two important stress factors that the plant's genome has to face: the stable integration of additional DNA into chromosomes and the extrachromosomal replication of a viral genome. TGS, which results from the impairment of transcription initiation through methylation and/or chromatin condensation, could derive from the mechanisms by which transposed copies of mobile elements and T-DNA insertions are tamed. PTGS, which results from the degradation of mRNA when aberrant sense, antisense, or double-stranded forms of RNA are produced, could derive from the process of recovery by which cells eliminate pathogens (RNA viruses) or their undesirable products (RNA encoded by DNA viruses). Mechanisms involving DNA-DNA, DNA-RNA, or RNA-RNA interactions are discussed to explain the various pathways for triggering (trans)gene silencing in plants.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":" ","pages":"167-194"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.51.1.167","citationCount":"335","resultStr":"{\"title\":\"(TRANS)GENE SILENCING IN PLANTS: How Many Mechanisms?\",\"authors\":\"M. Fagard,&nbsp;H. Vaucheret\",\"doi\":\"10.1146/annurev.arplant.51.1.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic silencing of transgenes and endogenous genes can occur at the transcriptional level (TGS) or at the posttranscriptional level (PTGS). Because they can be induced by transgenes and viruses, TGS and PTGS probably reflect alternative (although not exclusive) responses to two important stress factors that the plant's genome has to face: the stable integration of additional DNA into chromosomes and the extrachromosomal replication of a viral genome. TGS, which results from the impairment of transcription initiation through methylation and/or chromatin condensation, could derive from the mechanisms by which transposed copies of mobile elements and T-DNA insertions are tamed. PTGS, which results from the degradation of mRNA when aberrant sense, antisense, or double-stranded forms of RNA are produced, could derive from the process of recovery by which cells eliminate pathogens (RNA viruses) or their undesirable products (RNA encoded by DNA viruses). Mechanisms involving DNA-DNA, DNA-RNA, or RNA-RNA interactions are discussed to explain the various pathways for triggering (trans)gene silencing in plants.</p>\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\" \",\"pages\":\"167-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.arplant.51.1.167\",\"citationCount\":\"335\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.arplant.51.1.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.51.1.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 335

摘要

转基因和内源基因的表观遗传沉默可以发生在转录水平(TGS)或转录后水平(PTGS)。因为它们可以被转基因和病毒诱导,TGS和PTGS可能反映了植物基因组必须面对的两个重要胁迫因素的替代(尽管不是唯一的)反应:额外DNA稳定整合到染色体和病毒基因组的染色体外复制。TGS是由甲基化和/或染色质凝聚导致的转录起始损伤引起的,可能源于移动元件的转置拷贝和T-DNA插入被驯服的机制。PTGS是在产生异常正、反义或双链RNA时mRNA降解的结果,可能源于细胞消除病原体(RNA病毒)或其不良产物(DNA病毒编码的RNA)的恢复过程。涉及DNA-DNA, DNA-RNA或RNA-RNA相互作用的机制进行了讨论,以解释触发(反)基因沉默在植物中的各种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(TRANS)GENE SILENCING IN PLANTS: How Many Mechanisms?

Epigenetic silencing of transgenes and endogenous genes can occur at the transcriptional level (TGS) or at the posttranscriptional level (PTGS). Because they can be induced by transgenes and viruses, TGS and PTGS probably reflect alternative (although not exclusive) responses to two important stress factors that the plant's genome has to face: the stable integration of additional DNA into chromosomes and the extrachromosomal replication of a viral genome. TGS, which results from the impairment of transcription initiation through methylation and/or chromatin condensation, could derive from the mechanisms by which transposed copies of mobile elements and T-DNA insertions are tamed. PTGS, which results from the degradation of mRNA when aberrant sense, antisense, or double-stranded forms of RNA are produced, could derive from the process of recovery by which cells eliminate pathogens (RNA viruses) or their undesirable products (RNA encoded by DNA viruses). Mechanisms involving DNA-DNA, DNA-RNA, or RNA-RNA interactions are discussed to explain the various pathways for triggering (trans)gene silencing in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CIRCADIAN RHYTHMS IN PLANTS. MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS. ISOPRENE EMISSION FROM PLANTS. CHLAMYDOMONAS AS A MODEL ORGANISM. THE PLASTID DIVISION MACHINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1