{"title":"主动润湿上皮组织:建模考虑","authors":"Ivana Pajic-Lijakovic, Milan Milivojevic","doi":"10.1007/s00249-022-01625-w","DOIUrl":null,"url":null,"abstract":"<div><p>Morphogenesis, tissue regeneration, and cancer invasion involve transitions in tissue morphology. These transitions, caused by collective cell migration (CCM), have been interpreted as active wetting/de-wetting transitions. This phenomenon is considered based on a model system as wetting of a cell aggregate on a rigid substrate, which includes cell aggregate movement and isotropic/anisotropic spreading of a cell monolayer around the aggregate depending on the substrate rigidity and aggregate size. This model system accounts for the transition between 3D epithelial aggregate and 2D cell monolayer as a product of: (1) tissue surface tension, (2) surface tension of substrate matrix, (3) cell–matrix interfacial tension, (4) interfacial tension gradient, (5) viscoelasticity caused by CCM, and (6) viscoelasticity of substrate matrix. These physical parameters depend on the cell contractility and state of cell–cell and cell–matrix adhesion contacts, as well as the stretching/compression of cellular systems caused by CCM. Despite extensive research devoted to study cell wetting, we still do not understand the interplay among these physical parameters which induces an oscillatory trend of cell rearrangement. This review focuses on these physical parameters in governing the cell rearrangement in the context of epithelial aggregate wetting/de-wetting, and on modeling approaches aimed at reproducing and understanding these biological systems. In this context, we not only review previously published biophysical models for cell rearrangement caused by CCM, but also propose new extensions of those models to point out the interrelation between cell–matrix interfacial tension and epithelial viscoelasticity and the role of the interfacial tension gradient in cell spreading.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 1-2","pages":"1 - 15"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Active wetting of epithelial tissues: modeling considerations\",\"authors\":\"Ivana Pajic-Lijakovic, Milan Milivojevic\",\"doi\":\"10.1007/s00249-022-01625-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Morphogenesis, tissue regeneration, and cancer invasion involve transitions in tissue morphology. These transitions, caused by collective cell migration (CCM), have been interpreted as active wetting/de-wetting transitions. This phenomenon is considered based on a model system as wetting of a cell aggregate on a rigid substrate, which includes cell aggregate movement and isotropic/anisotropic spreading of a cell monolayer around the aggregate depending on the substrate rigidity and aggregate size. This model system accounts for the transition between 3D epithelial aggregate and 2D cell monolayer as a product of: (1) tissue surface tension, (2) surface tension of substrate matrix, (3) cell–matrix interfacial tension, (4) interfacial tension gradient, (5) viscoelasticity caused by CCM, and (6) viscoelasticity of substrate matrix. These physical parameters depend on the cell contractility and state of cell–cell and cell–matrix adhesion contacts, as well as the stretching/compression of cellular systems caused by CCM. Despite extensive research devoted to study cell wetting, we still do not understand the interplay among these physical parameters which induces an oscillatory trend of cell rearrangement. This review focuses on these physical parameters in governing the cell rearrangement in the context of epithelial aggregate wetting/de-wetting, and on modeling approaches aimed at reproducing and understanding these biological systems. In this context, we not only review previously published biophysical models for cell rearrangement caused by CCM, but also propose new extensions of those models to point out the interrelation between cell–matrix interfacial tension and epithelial viscoelasticity and the role of the interfacial tension gradient in cell spreading.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 1-2\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-022-01625-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-022-01625-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Active wetting of epithelial tissues: modeling considerations
Morphogenesis, tissue regeneration, and cancer invasion involve transitions in tissue morphology. These transitions, caused by collective cell migration (CCM), have been interpreted as active wetting/de-wetting transitions. This phenomenon is considered based on a model system as wetting of a cell aggregate on a rigid substrate, which includes cell aggregate movement and isotropic/anisotropic spreading of a cell monolayer around the aggregate depending on the substrate rigidity and aggregate size. This model system accounts for the transition between 3D epithelial aggregate and 2D cell monolayer as a product of: (1) tissue surface tension, (2) surface tension of substrate matrix, (3) cell–matrix interfacial tension, (4) interfacial tension gradient, (5) viscoelasticity caused by CCM, and (6) viscoelasticity of substrate matrix. These physical parameters depend on the cell contractility and state of cell–cell and cell–matrix adhesion contacts, as well as the stretching/compression of cellular systems caused by CCM. Despite extensive research devoted to study cell wetting, we still do not understand the interplay among these physical parameters which induces an oscillatory trend of cell rearrangement. This review focuses on these physical parameters in governing the cell rearrangement in the context of epithelial aggregate wetting/de-wetting, and on modeling approaches aimed at reproducing and understanding these biological systems. In this context, we not only review previously published biophysical models for cell rearrangement caused by CCM, but also propose new extensions of those models to point out the interrelation between cell–matrix interfacial tension and epithelial viscoelasticity and the role of the interfacial tension gradient in cell spreading.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.