熔融碳酸盐基直接碳燃料电池研究进展

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2021-07-02 DOI:10.1007/s40243-021-00197-7
Can Cui, Shuangbin Li, Junyi Gong, Keyan Wei, Xiangjun Hou, Cairong Jiang, Yali Yao, Jianjun Ma
{"title":"熔融碳酸盐基直接碳燃料电池研究进展","authors":"Can Cui,&nbsp;Shuangbin Li,&nbsp;Junyi Gong,&nbsp;Keyan Wei,&nbsp;Xiangjun Hou,&nbsp;Cairong Jiang,&nbsp;Yali Yao,&nbsp;Jianjun Ma","doi":"10.1007/s40243-021-00197-7","DOIUrl":null,"url":null,"abstract":"<p>Direct carbon fuel cell (DCFC) is a promising technology with high energy efficiency and abundant fuel. To date, a variety of DCFC configurations have been investigated, with molten hydroxide, molten carbonate or oxides being used as the electrolyte. Recently, there has been particular interest in DCFC with molten carbonate involved. The molten carbonate is either an electrolyte or a catalyst in different cell structures. In this review, we consider carbonate as the clue to discuss the function of carbonate in DCFCs, and start the paper by outlining the developments in terms of molten carbonate (MC)-based DCFC and its electrochemical oxidation processes. Thereafter, the composite electrolyte merging solid carbonate and mixed ionic–electronic conductors (MIEC) are discussed. Hybrid DCFC (HDCFCs?) combining molten carbonate and solid oxide fuel cell (SOFC) are also touched on. The primary function of carbonate (i.e., facilitating ion transfer and expanding the triple-phase boundaries) in these systems, is then discussed in detail. Finally, some issues are identified and a future outlook outlined, including a corrosion attack of cell components, reactions using inorganic salt from fuel ash, and wetting with carbon fuels.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00197-7","citationCount":"10","resultStr":"{\"title\":\"Review of molten carbonate-based direct carbon fuel cells\",\"authors\":\"Can Cui,&nbsp;Shuangbin Li,&nbsp;Junyi Gong,&nbsp;Keyan Wei,&nbsp;Xiangjun Hou,&nbsp;Cairong Jiang,&nbsp;Yali Yao,&nbsp;Jianjun Ma\",\"doi\":\"10.1007/s40243-021-00197-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct carbon fuel cell (DCFC) is a promising technology with high energy efficiency and abundant fuel. To date, a variety of DCFC configurations have been investigated, with molten hydroxide, molten carbonate or oxides being used as the electrolyte. Recently, there has been particular interest in DCFC with molten carbonate involved. The molten carbonate is either an electrolyte or a catalyst in different cell structures. In this review, we consider carbonate as the clue to discuss the function of carbonate in DCFCs, and start the paper by outlining the developments in terms of molten carbonate (MC)-based DCFC and its electrochemical oxidation processes. Thereafter, the composite electrolyte merging solid carbonate and mixed ionic–electronic conductors (MIEC) are discussed. Hybrid DCFC (HDCFCs?) combining molten carbonate and solid oxide fuel cell (SOFC) are also touched on. The primary function of carbonate (i.e., facilitating ion transfer and expanding the triple-phase boundaries) in these systems, is then discussed in detail. Finally, some issues are identified and a future outlook outlined, including a corrosion attack of cell components, reactions using inorganic salt from fuel ash, and wetting with carbon fuels.</p>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40243-021-00197-7\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-021-00197-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-021-00197-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

直接碳燃料电池(DCFC)具有能源效率高、燃料储量丰富等优点。迄今为止,人们已经研究了多种DCFC结构,包括熔融氢氧化物、熔融碳酸盐或氧化物作为电解质。最近,人们对涉及熔融碳酸盐的DCFC特别感兴趣。熔融碳酸盐在不同的电池结构中是电解质或催化剂。本文以碳酸盐为线索,讨论了碳酸盐在DCFCs中的作用,并概述了熔融碳酸盐(MC)基DCFC及其电化学氧化过程的研究进展。然后,讨论了固体碳酸盐和混合离子电子导体的复合电解质(MIEC)。混合DCFC (hdcfc ?)结合熔融碳酸盐和固体氧化物燃料电池(SOFC)也被提及。然后详细讨论了碳酸盐在这些体系中的主要作用(即促进离子转移和扩大三相边界)。最后,指出了一些问题,并概述了未来的展望,包括电池组件的腐蚀,使用燃料灰烬中的无机盐的反应,以及碳燃料的润湿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of molten carbonate-based direct carbon fuel cells

Direct carbon fuel cell (DCFC) is a promising technology with high energy efficiency and abundant fuel. To date, a variety of DCFC configurations have been investigated, with molten hydroxide, molten carbonate or oxides being used as the electrolyte. Recently, there has been particular interest in DCFC with molten carbonate involved. The molten carbonate is either an electrolyte or a catalyst in different cell structures. In this review, we consider carbonate as the clue to discuss the function of carbonate in DCFCs, and start the paper by outlining the developments in terms of molten carbonate (MC)-based DCFC and its electrochemical oxidation processes. Thereafter, the composite electrolyte merging solid carbonate and mixed ionic–electronic conductors (MIEC) are discussed. Hybrid DCFC (HDCFCs?) combining molten carbonate and solid oxide fuel cell (SOFC) are also touched on. The primary function of carbonate (i.e., facilitating ion transfer and expanding the triple-phase boundaries) in these systems, is then discussed in detail. Finally, some issues are identified and a future outlook outlined, including a corrosion attack of cell components, reactions using inorganic salt from fuel ash, and wetting with carbon fuels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1