长期酒精化过程中TLR3诱导通过TRAIL信号增加大鼠脑干扰素含量

IF 0.6 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Pub Date : 2021-11-02 DOI:10.1134/S1990750821040028
M. I. Airapetov, S. O. Eresko, A. K. Vasiliev, V. Y. Vasilieva, E. R. Bychkov, A. A. Lebedev, P. D. Shabanov
{"title":"长期酒精化过程中TLR3诱导通过TRAIL信号增加大鼠脑干扰素含量","authors":"M. I. Airapetov,&nbsp;S. O. Eresko,&nbsp;A. K. Vasiliev,&nbsp;V. Y. Vasilieva,&nbsp;E. R. Bychkov,&nbsp;A. A. Lebedev,&nbsp;P. D. Shabanov","doi":"10.1134/S1990750821040028","DOIUrl":null,"url":null,"abstract":"<p>The pathogenetic mechanisms associated with alcohol use include dysregulation of the innate immune system mechanisms in the brain. Increased TLR3 expression was found in the postmortem material of the prefrontal cortex of humans. An increase in the TLR3 signaling activity leads to the induction of interferons (IFNs). IFNs are associated with depressive symptoms and, therefore, may play a role in the pathogenesis of alcoholism; however, the exact mechanisms of the ethanol effects on intracellular signaling pathways are not fully elucidated and their study was the purpose of this work. The experimental results showed that ethanol and the TLR3 agonist Poly (I:C) increased the content of TLR3, IFNβ, and IFNγ mRNA in the prefrontal cortex. In addition, expression of the <i>TRAIL</i> encoding gene also increased, and this increase positively correlated with the mRNA content of TLR3, IFNβ and IFNγ both under alcoholization conditions and after injections of the TLR3 agonist. The data obtained may indicate that alcoholization is able to activate TLR3-TRAIL-IFN-signaling in the medial prefrontal cortex (mPFC) of the rat brain.</p>","PeriodicalId":485,"journal":{"name":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","volume":"15 4","pages":"306 - 312"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TLR3 Induction During Long-Term Alcoholization Increases the Content of Rat Brain Interferons by TRAIL Signaling\",\"authors\":\"M. I. Airapetov,&nbsp;S. O. Eresko,&nbsp;A. K. Vasiliev,&nbsp;V. Y. Vasilieva,&nbsp;E. R. Bychkov,&nbsp;A. A. Lebedev,&nbsp;P. D. Shabanov\",\"doi\":\"10.1134/S1990750821040028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pathogenetic mechanisms associated with alcohol use include dysregulation of the innate immune system mechanisms in the brain. Increased TLR3 expression was found in the postmortem material of the prefrontal cortex of humans. An increase in the TLR3 signaling activity leads to the induction of interferons (IFNs). IFNs are associated with depressive symptoms and, therefore, may play a role in the pathogenesis of alcoholism; however, the exact mechanisms of the ethanol effects on intracellular signaling pathways are not fully elucidated and their study was the purpose of this work. The experimental results showed that ethanol and the TLR3 agonist Poly (I:C) increased the content of TLR3, IFNβ, and IFNγ mRNA in the prefrontal cortex. In addition, expression of the <i>TRAIL</i> encoding gene also increased, and this increase positively correlated with the mRNA content of TLR3, IFNβ and IFNγ both under alcoholization conditions and after injections of the TLR3 agonist. The data obtained may indicate that alcoholization is able to activate TLR3-TRAIL-IFN-signaling in the medial prefrontal cortex (mPFC) of the rat brain.</p>\",\"PeriodicalId\":485,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry\",\"volume\":\"15 4\",\"pages\":\"306 - 312\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990750821040028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990750821040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与酒精使用相关的发病机制包括大脑先天免疫系统机制的失调。在人类死后的前额皮质物质中发现TLR3表达增加。TLR3信号活性的增加导致干扰素(ifn)的诱导。ifn与抑郁症状相关,因此可能在酒精中毒的发病机制中发挥作用;然而,乙醇对细胞内信号通路影响的确切机制尚未完全阐明,这是本研究的目的。实验结果表明,乙醇和TLR3激动剂Poly (I:C)增加了前额皮质TLR3、IFNβ和IFNγ mRNA的含量。此外,在醇化条件下和注射TLR3激动剂后,TRAIL编码基因的表达也有所增加,且这种增加与TLR3、IFNβ和IFNγ mRNA含量呈正相关。所获得的数据可能表明,酒精化能够激活大鼠大脑内侧前额叶皮层(mPFC)中的tlr3 - trail - ifn信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TLR3 Induction During Long-Term Alcoholization Increases the Content of Rat Brain Interferons by TRAIL Signaling

The pathogenetic mechanisms associated with alcohol use include dysregulation of the innate immune system mechanisms in the brain. Increased TLR3 expression was found in the postmortem material of the prefrontal cortex of humans. An increase in the TLR3 signaling activity leads to the induction of interferons (IFNs). IFNs are associated with depressive symptoms and, therefore, may play a role in the pathogenesis of alcoholism; however, the exact mechanisms of the ethanol effects on intracellular signaling pathways are not fully elucidated and their study was the purpose of this work. The experimental results showed that ethanol and the TLR3 agonist Poly (I:C) increased the content of TLR3, IFNβ, and IFNγ mRNA in the prefrontal cortex. In addition, expression of the TRAIL encoding gene also increased, and this increase positively correlated with the mRNA content of TLR3, IFNβ and IFNγ both under alcoholization conditions and after injections of the TLR3 agonist. The data obtained may indicate that alcoholization is able to activate TLR3-TRAIL-IFN-signaling in the medial prefrontal cortex (mPFC) of the rat brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
31
期刊介绍: Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry   covers all major aspects of biomedical chemistry and related areas, including proteomics and molecular biology of (patho)physiological processes, biochemistry, neurochemistry, immunochemistry and clinical chemistry, bioinformatics, gene therapy, drug design and delivery, biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine. The journal also publishes review articles. All issues of the journal usually contain solicited reviews.
期刊最新文献
Effect of Elevated Concentrations of Antibodies on the Immune Response in Patients with Autoimmune Thyroiditis Expression of miR-21, miR-378a, miR-205, and Their Targets in ER-Positive Breast Tumors with Different HER2 Protein Levels Construction of Expression Vectors for Efficient Production of Recombinant Proteins in E. coli for the Development of Therapeutic Drugs Effects of Various Poly(A) Tails on Luciferase Expression The Role of Arachidonic Acid Metabolizing Cytochromes P450 in the Control of Cardiovascular Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1