{"title":"[表达基于人自身抗体的嵌合受体靶向胎儿乙酰胆碱受体的T细胞裂解横纹肌肉瘤]。","authors":"S Gattenlöhner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rhabdomyosarcomas (RMSs) are the most frequent malignant soft tissue tumors of childhood. Since even aggressive multimodality treatments including autologous stem cell rescue have failed to improve the < 20 % overall survival rate of children with metastatic RMS, novel treatment approaches are urgently needed. Looking for potential targets for immunotherapies, we identified the gamma subunit of the fetal acetylcholine receptor (fAChR) as a specific and overexpressed membrane antigen in RMS. Additionally we established a duplex RT-PCR with simultaneous amplification of alpha and gamma subunit message of the fAChR and the quantification of both transcripts resulting in alpha/gammaAChR ratio > 1 was 100% sensitive in alveolar and embryonal rhabdomyosarcoma. Since the fAChR was the first extracellular tumor marker that can distinguish rhabdomyosarcomas from nonrhabdomyomatous tumors and from normal muscle and therefore implies, that the fAChR may be a target for immunotherapeutic strategies, we synthesized a scFv antibody fragment directed against the fAChR and enigineered both a Pseudomonas exotoxin A based immunotoxin as well as a chimeric T cell receptor composed of the antigen-binding domain of the scFv fragment joined to the signaling domain of the T cell receptor zeta chain. The interaction of fAChzeta-transduced T cells with several RMS cell lines but not with fAChR-negative controls induced strong T cell activation, characterized by secretion of high amounts of interferon-gamma. Moreover after co-incubations with RMS cell lines fAChRzeta-transduced T cells as well fAChR specific immunotoxin induced specific receptor-concentration dependent tumor cell lysis. Therefore, fAChRzeta-transduced T cells and the fAChR specific immunotoxin respectively are promising new tools for the immunotherapy of rhabdomyosarcomas and may provide an effective complementary approach to eradicate residual or metastatic RMS cells in patients, since 1. RMS-direceted chemotherapies increase the expression of fAChR on residual RMS cells in vivo and 2. the fully human fAChR autoantibody fragment with low immunizing potential allows prolonged/permanent application of fAChRzeta-transduced T cells/immunotoxin.</p>","PeriodicalId":76792,"journal":{"name":"Verhandlungen der Deutschen Gesellschaft fur Pathologie","volume":"90 ","pages":"264-76"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Rhabdomyosarcoma lysis by T cells expressing a human autoantibody based chimeric receptor targeting the fetal acetylcholine receptors].\",\"authors\":\"S Gattenlöhner\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhabdomyosarcomas (RMSs) are the most frequent malignant soft tissue tumors of childhood. Since even aggressive multimodality treatments including autologous stem cell rescue have failed to improve the < 20 % overall survival rate of children with metastatic RMS, novel treatment approaches are urgently needed. Looking for potential targets for immunotherapies, we identified the gamma subunit of the fetal acetylcholine receptor (fAChR) as a specific and overexpressed membrane antigen in RMS. Additionally we established a duplex RT-PCR with simultaneous amplification of alpha and gamma subunit message of the fAChR and the quantification of both transcripts resulting in alpha/gammaAChR ratio > 1 was 100% sensitive in alveolar and embryonal rhabdomyosarcoma. Since the fAChR was the first extracellular tumor marker that can distinguish rhabdomyosarcomas from nonrhabdomyomatous tumors and from normal muscle and therefore implies, that the fAChR may be a target for immunotherapeutic strategies, we synthesized a scFv antibody fragment directed against the fAChR and enigineered both a Pseudomonas exotoxin A based immunotoxin as well as a chimeric T cell receptor composed of the antigen-binding domain of the scFv fragment joined to the signaling domain of the T cell receptor zeta chain. The interaction of fAChzeta-transduced T cells with several RMS cell lines but not with fAChR-negative controls induced strong T cell activation, characterized by secretion of high amounts of interferon-gamma. Moreover after co-incubations with RMS cell lines fAChRzeta-transduced T cells as well fAChR specific immunotoxin induced specific receptor-concentration dependent tumor cell lysis. Therefore, fAChRzeta-transduced T cells and the fAChR specific immunotoxin respectively are promising new tools for the immunotherapy of rhabdomyosarcomas and may provide an effective complementary approach to eradicate residual or metastatic RMS cells in patients, since 1. RMS-direceted chemotherapies increase the expression of fAChR on residual RMS cells in vivo and 2. the fully human fAChR autoantibody fragment with low immunizing potential allows prolonged/permanent application of fAChRzeta-transduced T cells/immunotoxin.</p>\",\"PeriodicalId\":76792,\"journal\":{\"name\":\"Verhandlungen der Deutschen Gesellschaft fur Pathologie\",\"volume\":\"90 \",\"pages\":\"264-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Verhandlungen der Deutschen Gesellschaft fur Pathologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Verhandlungen der Deutschen Gesellschaft fur Pathologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Rhabdomyosarcoma lysis by T cells expressing a human autoantibody based chimeric receptor targeting the fetal acetylcholine receptors].
Rhabdomyosarcomas (RMSs) are the most frequent malignant soft tissue tumors of childhood. Since even aggressive multimodality treatments including autologous stem cell rescue have failed to improve the < 20 % overall survival rate of children with metastatic RMS, novel treatment approaches are urgently needed. Looking for potential targets for immunotherapies, we identified the gamma subunit of the fetal acetylcholine receptor (fAChR) as a specific and overexpressed membrane antigen in RMS. Additionally we established a duplex RT-PCR with simultaneous amplification of alpha and gamma subunit message of the fAChR and the quantification of both transcripts resulting in alpha/gammaAChR ratio > 1 was 100% sensitive in alveolar and embryonal rhabdomyosarcoma. Since the fAChR was the first extracellular tumor marker that can distinguish rhabdomyosarcomas from nonrhabdomyomatous tumors and from normal muscle and therefore implies, that the fAChR may be a target for immunotherapeutic strategies, we synthesized a scFv antibody fragment directed against the fAChR and enigineered both a Pseudomonas exotoxin A based immunotoxin as well as a chimeric T cell receptor composed of the antigen-binding domain of the scFv fragment joined to the signaling domain of the T cell receptor zeta chain. The interaction of fAChzeta-transduced T cells with several RMS cell lines but not with fAChR-negative controls induced strong T cell activation, characterized by secretion of high amounts of interferon-gamma. Moreover after co-incubations with RMS cell lines fAChRzeta-transduced T cells as well fAChR specific immunotoxin induced specific receptor-concentration dependent tumor cell lysis. Therefore, fAChRzeta-transduced T cells and the fAChR specific immunotoxin respectively are promising new tools for the immunotherapy of rhabdomyosarcomas and may provide an effective complementary approach to eradicate residual or metastatic RMS cells in patients, since 1. RMS-direceted chemotherapies increase the expression of fAChR on residual RMS cells in vivo and 2. the fully human fAChR autoantibody fragment with low immunizing potential allows prolonged/permanent application of fAChRzeta-transduced T cells/immunotoxin.